未验证 提交 2ba4515e 编写于 作者: C cyberslack_lee 提交者: GitHub

support auto generate for huber_loss (#51951)

* fix huber_loss

* fix

* fix ops.yaml add intermediate

* fix

* fix test
上级 b6af72eb
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class HuberLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input value of huber loss op."
"X is a N-D tensor with shape [N_1, N_2,..., N_n].");
AddInput("Y",
"The target value of huber loss op."
"Y is a N-D tensor with shape [N_1, N_2,..., N_n].");
AddOutput("Residual",
"Intermediate tensor to cache residual value between Y and X."
"The shape is same as Input(X) and will be reused in backward.")
.AsIntermediate();
AddOutput("Out",
"The output N-D tensor with shape [N_1, N_2,..., N_n] "
"which represents the huber loss.");
AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
AddComment(R"DOC(
HuberLoss Operator.
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. If the
shape of X and Y are [batch_size, 1]. The equation is:
$$
Out_{\delta}(X, Y)_i =
\begin{cases}
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
\quad otherwise
\end{cases}
$$
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
)DOC");
}
};
class HuberLossGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInputs(framework::GradVarName("Out")),
"Input",
"Out@GRAD",
"HuberLossGrad");
auto residual_dims = ctx->GetInputDim("Residual");
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, residual_dims);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->SetOutputDim(y_grad_name, residual_dims);
}
}
};
template <typename T>
class HuberLossGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("huber_loss_grad");
op->SetInput("Residual", this->Output("Residual"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(huber_loss,
HuberLossInferShapeFunctor,
PD_INFER_META(phi::HuberLossInferMeta));
REGISTER_OPERATOR(huber_loss,
ops::HuberLossOp,
ops::HuberLossOpMaker<float>,
ops::HuberLossGradOpMaker<paddle::framework::OpDesc>,
ops::HuberLossGradOpMaker<paddle::imperative::OpBase>,
HuberLossInferShapeFunctor);
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
......@@ -680,6 +680,16 @@
func : hardtanh_grad
inplace : (out_grad -> x_grad)
- backward_op : huber_loss_grad
forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
args : (Tensor residual, Tensor out_grad, float delta)
output : Tensor(input_grad), Tensor(label_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [residual, residual]
kernel :
func : huber_loss_grad
- backward_op : imag_grad
forward : imag (Tensor x) -> Tensor(out)
args : (Tensor out_grad)
......
......@@ -564,16 +564,6 @@
kernel :
func : hsigmoid_loss_grad
- backward_op : huber_loss_grad
forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
args : (Tensor residual, Tensor out_grad, float delta)
output : Tensor(input_grad), Tensor(label_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [residual, residual]
kernel :
func : huber_loss_grad
- backward_op : instance_norm_double_grad
forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon)
......
......@@ -813,15 +813,6 @@
data_type : x
backward : hsigmoid_loss_grad
- op : huber_loss
args : (Tensor input, Tensor label, float delta)
output : Tensor(out), Tensor(residual)
infer_meta :
func : HuberLossInferMeta
kernel :
func : huber_loss
backward : huber_loss_grad
- op : increment
args : (Tensor x, float value = 1.0)
output : Tensor(out)
......
......@@ -889,6 +889,13 @@
outputs :
out : Out
- op : huber_loss
backward : huber_loss_grad
inputs :
{input : X, label : Y}
outputs :
{out : Out, residual : Residual}
- op : imag
backward : imag_grad
inputs :
......
......@@ -671,6 +671,16 @@
kernel :
func : histogram
- op : huber_loss
args : (Tensor input, Tensor label, float delta)
output : Tensor(out), Tensor(residual)
infer_meta :
func : HuberLossInferMeta
kernel :
func : huber_loss
intermediate : residual
backward : huber_loss_grad
- op : imag
args : (Tensor x)
output : Tensor (out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature HuberLossOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature(
"huber_loss", {"X", "Y"}, {"delta"}, {"Out", "Residual"});
}
KernelSignature HuberLossGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("huber_loss_grad",
{"Residual", "Out@GRAD"},
{"delta"},
{"X@GRAD", "Y@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(huber_loss, phi::HuberLossOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(huber_loss_grad,
phi::HuberLossGradOpArgumentMapping);
......@@ -29,8 +29,8 @@ def huber_loss_forward(val, delta):
def huber_loss_wraper(x, y, delta):
a, b = paddle._C_ops.huber_loss(x, y, delta)
return a, b
a = paddle._C_ops.huber_loss(x, y, delta)
return a
class TestHuberLossOp(OpTest):
......
......@@ -1104,7 +1104,7 @@ def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
"""
if in_dygraph_mode():
out, residual = _C_ops.huber_loss(input, label, delta)
out = _C_ops.huber_loss(input, label, delta)
else:
check_variable_and_dtype(
input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册