loss.py 155.9 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
24
from ...tensor.manipulation import reshape
25
from ...fluid.layer_helper import LayerHelper
26
from ...fluid.framework import _varbase_creator
27
from ...static import Variable
28
from paddle.utils import deprecated
29
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
30
from paddle import in_dynamic_mode
Y
yangguohao 已提交
31
from paddle.framework import core, _non_static_mode
32
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode, _current_expected_place
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
    assert len(input.shape) >= 2, \
        "The rank of input should be greater than or equal to 2."
83 84 85 86
    assert len(input.shape) == len(
        label.shape), ("The rank of input and label should be equal, "
                       "but received input: %d, label: %d." %
                       (len(input.shape), len(label.shape)))
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
                                  "but received %d." % label.shape[-1])
    assert input.shape[:-1] == label.shape[:-1], (
        "All dimensions should be equal except the last one.")
    assert input.numel() > 0 and label.numel() > 0, \
        "Any dimension of input and label cannot be equal to 0."

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
        label, axis=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
142
        return _C_ops.log_loss(input, label, epsilon)
143 144 145 146 147 148 149

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

150 151 152 153 154 155 156
    helper.append_op(type='log_loss',
                     inputs={
                         'Predicted': [input],
                         'Labels': [label]
                     },
                     outputs={'Loss': [loss]},
                     attrs={'epsilon': epsilon})
157 158 159 160 161 162 163 164 165 166 167 168
    return loss


def fluid_softmax_with_cross_entropy(logits,
                                     label,
                                     soft_label=False,
                                     ignore_index=-100,
                                     numeric_stable_mode=True,
                                     return_softmax=False,
                                     axis=-1):
    r"""

169 170
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
171 172 173 174 175 176
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

177 178 179
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
180 181 182 183 184 185 186
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
187
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
188 189 190 191

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
192
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
193 194 195 196

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
197 198 199
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
200 201 202 203 204 205

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
206 207 208
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
209 210 211 212 213
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
214
                                      if :attr:`soft_label` is set to :attr:`False`.
215 216 217
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
218 219 220
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
221 222 223 224 225
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
226
        axis (int, optional): The index of dimension to perform softmax calculations. It
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
    if _non_static_mode():
        if core.is_compiled_with_npu():
255
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
256 257 258 259 260
                logits, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                'axis', axis)
        else:
            if in_dygraph_mode():
261
                softmax, loss = _C_ops.cross_entropy_with_softmax(
262 263 264
                    logits, label, soft_label, True, numeric_stable_mode,
                    ignore_index, axis)
            if _in_legacy_dygraph():
265
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                    logits, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', numeric_stable_mode,
                    'axis', axis)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': numeric_stable_mode,
        'axis': axis
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    outputs = {'Softmax': softmax, 'Loss': loss}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=logits.dtype)
        outputs['Backprop'] = backprop
288 289 290 291 292 293 294
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
295 296 297 298 299 300 301 302

    if return_softmax:
        return loss, softmax

    return loss


def npair_loss(anchor, positive, labels, l2_reg=0.002):
303 304
    """

305 306 307
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
308

309 310
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
311

312
    Args:
313
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
314
                        the data type is float32 or float64.
315
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
316 317 318 319
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

320

321 322
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
323

324 325 326
    Examples:

      .. code-block:: python
327

328
          import paddle
329

330
          DATATYPE = "float32"
331

332 333 334
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
335

336 337
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
338

339 340 341 342 343 344 345 346 347 348 349 350 351
    """
    check_variable_and_dtype(anchor, 'anchor', ['float32', 'float64'],
                             'npair_loss')
    check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                             'positive')
    check_variable_and_dtype(labels, 'labels', ['float32', 'float64', 'int64'],
                             'labels')
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

352 353 354
    labels = paddle.equal(labels, paddle.transpose(labels,
                                                   perm=[1,
                                                         0])).astype('float32')
355 356 357 358 359 360
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) \
             + paddle.mean(paddle.sum(paddle.square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

361 362 363 364 365 366 367
    similarity_matrix = paddle.matmul(anchor,
                                      positive,
                                      transpose_x=False,
                                      transpose_y=True)
    softmax_ce = fluid_softmax_with_cross_entropy(logits=similarity_matrix,
                                                  label=labels,
                                                  soft_label=True)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
391 392
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
393 394 395 396 397 398 399 400 401 402 403 404 405

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
406
    if in_dygraph_mode():
407 408
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
409 410
        return square_out
    elif _in_legacy_dygraph():
411 412
        minus_out = _legacy_C_ops.elementwise_sub(input, label)
        square_out = _legacy_C_ops.square(minus_out)
413 414 415 416 417 418 419 420
        return square_out

    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'square_error_cost')
    check_variable_and_dtype(label, "label", ['float32', 'float64'],
                             'square_error_cost')
    helper = LayerHelper('square_error_cost', **locals())
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
421 422 423 424 425 426
    helper.append_op(type='elementwise_sub',
                     inputs={
                         'X': [input],
                         'Y': [label]
                     },
                     outputs={'Out': [minus_out]})
427 428

    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
429 430 431
    helper.append_op(type='square',
                     inputs={'X': [minus_out]},
                     outputs={'Out': [square_out]})
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    return square_out


def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance

    Returns:
	Tuple:

        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

517 518 519 520
        helper.append_op(type="sequence_erase",
                         inputs={"X": [input]},
                         outputs={"Out": [erased_input]},
                         attrs={"tokens": ignored_tokens})
521 522
        input = erased_input

523 524 525 526
        helper.append_op(type="sequence_erase",
                         inputs={"X": [label]},
                         outputs={"Out": [erased_label]},
                         attrs={"tokens": ignored_tokens})
527 528
        label = erased_label

Z
zhiboniu 已提交
529
    if in_dygraph_mode():
530 531
        return _C_ops.edit_distance(input, label, input_length, label_length,
                                    normalized)
Z
zhiboniu 已提交
532

533 534 535 536 537 538 539 540
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
541 542 543 544 545 546 547
    helper.append_op(type="edit_distance",
                     inputs=this_inputs,
                     outputs={
                         "Out": [edit_distance_out],
                         "SequenceNum": [sequence_num]
                     },
                     attrs={"normalized": normalized})
548 549 550 551

    return edit_distance_out, sequence_num


552 553 554 555
def binary_cross_entropy(input,
                         label,
                         weight=None,
                         reduction='mean',
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

615 616
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
617
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
618
            print(output)  # [0.65537095]
619 620 621 622 623 624 625 626

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

J
Jiabin Yang 已提交
627
    if in_dygraph_mode():
628
        out = _C_ops.bce_loss(input, label)
629
        if weight is not None:
630
            out = _C_ops.multiply(out, weight, 'axis', -1)
631 632

        if reduction == 'sum':
633
            return _C_ops.sum(out, [], None, False)
634

635
        elif reduction == 'mean':
636
            return _C_ops.mean_all(out)
637 638 639
        else:
            return out
    else:
J
Jiabin Yang 已提交
640
        if _in_legacy_dygraph():
641
            out = _legacy_C_ops.bce_loss(input, label)
J
Jiabin Yang 已提交
642
            if weight is not None:
643
                out = _legacy_C_ops.elementwise_mul(out, weight, 'axis', -1)
J
Jiabin Yang 已提交
644
            if reduction == 'sum':
645 646
                return _legacy_C_ops.reduce_sum(out, 'dim', [0], 'keep_dim',
                                                False, "reduce_all", True)
J
Jiabin Yang 已提交
647
            elif reduction == 'mean':
648
                return _legacy_C_ops.mean(out)
J
Jiabin Yang 已提交
649 650 651
            else:
                return out
        else:
652 653 654 655
            check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                     'binary_cross_entropy')
            check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                     'binary_cross_entropy')
J
Jiabin Yang 已提交
656 657 658 659

            sub_name = name if weight is None and reduction == 'none' else None
            helper = LayerHelper("binary_cross_entropy", name=sub_name)
            out = helper.create_variable_for_type_inference(dtype=input.dtype)
660 661 662 663 664 665
            helper.append_op(type='bce_loss',
                             inputs={
                                 'X': [input],
                                 'Label': [label],
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

            if weight is not None:
                if isinstance(weight, paddle.static.Variable):
                    weight_name = name if reduction == 'none' else None
                    out = paddle.multiply(out, weight, name=weight_name)
                else:
                    raise ValueError(
                        "The weight is not a Tensor, please convert to Tensor.")

            if reduction == 'sum':
                return paddle.sum(out, name=name)
            elif reduction == 'mean':
                return paddle.mean(out, name=name)
            else:
                return out
681 682


683 684 685 686 687 688
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
689
    r"""
690 691 692 693 694 695 696 697 698 699 700 701 702
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
703
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
704

705
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
706 707

    .. math::
708
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
709

N
Noel 已提交
710
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
711 712 713
    we reformulate the loss as follows:

    .. math::
714
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
759

760 761
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
762
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
763
            print(output)  # [0.45618808]
764 765 766 767 768 769 770 771

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

772
    if in_dygraph_mode():
773 774 775 776
        one = _C_ops.full([1], float(1.0), core.VarDesc.VarType.FP32,
                          _current_expected_place())
        out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                       -100)
777
        if pos_weight is not None:
778 779 780
            log_weight = _C_ops.add(
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one)
            out = _C_ops.multiply(out, log_weight)
781
        if weight is not None:
782
            out = _C_ops.multiply(out, weight)
783 784

        if reduction == "sum":
785
            return _C_ops.sum(out, [], None, False)
786
        elif reduction == "mean":
787
            return _C_ops.mean_all(out)
H
hong 已提交
788
        else:
789 790 791
            return out
    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
792 793 794 795
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', [1])
        out = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
796
        if pos_weight is not None:
797 798 799 800
            log_weight = _legacy_C_ops.elementwise_add(
                _legacy_C_ops.elementwise_mul(
                    label, _legacy_C_ops.elementwise_sub(pos_weight, one)), one)
            out = _legacy_C_ops.elementwise_mul(out, log_weight)
801
        if weight is not None:
802
            out = _legacy_C_ops.elementwise_mul(out, weight)
803 804

        if reduction == "sum":
805
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
806
        elif reduction == "mean":
807
            return _legacy_C_ops.mean(out)
808 809 810
        else:
            return out

811 812 813 814
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'binary_cross_entropy_with_logits')
815 816 817 818
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

819
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
820 821
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
822
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
823
    if pos_weight is not None:
824 825 826
        check_variable_and_dtype(pos_weight, 'pos_weight',
                                 ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
827
        log_weight = paddle.add(
828
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
829 830 831 832
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
833 834
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'binary_cross_entropy_with_logits')
835 836 837 838 839 840 841 842 843 844
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


845 846 847 848 849 850 851 852 853 854 855 856
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
857

858 859 860
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
861 862

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
863 864
    represents the number of classes or the size of word dict.

865 866 867 868
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
915 916 917 918 919
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
920 921 922
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
923 924 925 926
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
927 928

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
929 930 931 932
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
933
    """
934
    if in_dygraph_mode():
935 936
        out, _, _ = _C_ops.hierarchical_sigmoid(input, weight, label,
                                                path_table, path_code, bias,
937 938 939 940 941 942 943
                                                num_classes, is_sparse, 0, [],
                                                [], [], is_sparse)
        return out
    elif _in_legacy_dygraph():
        out, _, _ = _legacy_C_ops.hierarchical_sigmoid(
            input, weight, label, path_table, path_code, bias, 'num_classes',
            num_classes, 'is_sparse', is_sparse, 'remote_prefetch', is_sparse)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

981 982 983 984
    helper.append_op(type="hierarchical_sigmoid",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
985 986 987
    return out


988
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
989
    r"""
990
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
991 992 993 994 995 996
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

997
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
998 999 1000 1001 1002 1003


    where z_i is given by:

    .. math::

1004 1005
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1006
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1007
        \end{array} \right.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1021
        delta (float, optional): Specifies the hyperparameter delta to be used.
1022 1023 1024 1025 1026 1027 1028
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1029
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
1041
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1042
            print(output)
1043
    """
1044 1045 1046 1047
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'smooth_l1_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'smooth_l1_loss')
1048

1049
    if in_dygraph_mode():
1050
        out, residual = _C_ops.huber_loss(input, label, delta)
1051 1052 1053 1054 1055 1056
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        helper.append_op(type='huber_loss',
                         inputs={
                             'X': input,
                             'Y': label
                         },
                         outputs={
                             'Out': out,
                             'Residual': residual
                         },
                         attrs={'delta': delta})
1067 1068 1069 1070 1071 1072 1073 1074

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1075
        return paddle.mean(out)
1076
    elif reduction == 'sum':
1077
        return paddle.sum(out)
1078 1079


1080 1081
def margin_ranking_loss(input,
                        other,
1082
                        label,
1083 1084 1085
                        margin=0.0,
                        reduction='mean',
                        name=None):
1086
    r"""
1087

1088
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1089

1090
    .. math::
1091
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1108
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1109 1110 1111 1112
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1113
    Returns:
1114
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1115 1116 1117 1118 1119

    Examples:

        .. code-block:: python

1120 1121
            import paddle

Z
Zhong Hui 已提交
1122 1123 1124
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1125
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1126
            print(loss) # [0.75]
1127
    """
1128 1129 1130 1131
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
1132
    if in_dygraph_mode():
1133 1134
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1135 1136
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1137 1138
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1139
        if reduction == 'sum':
1140
            return _C_ops.sum(out, [], None, False)
1141
        elif reduction == 'mean':
1142
            return _C_ops.mean_all(out)
1143 1144
        return out
    elif _in_legacy_dygraph():
1145 1146
        out = _legacy_C_ops.elementwise_sub(other, input)
        out = _legacy_C_ops.elementwise_mul(out, label)
1147 1148
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1149 1150
            out = _legacy_C_ops.elementwise_add(out, margin)
        out = _legacy_C_ops.relu(out)
1151
        if reduction == 'sum':
1152
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
1153
        elif reduction == 'mean':
1154
            return _legacy_C_ops.mean(out)
1155 1156 1157
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
1158 1159 1160 1161 1162 1163
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(other, 'other', ['float32', 'float64'],
                             'margin_rank_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'margin_rank_loss')
1164

1165 1166 1167
    out = paddle.subtract(input, other)
    neg_label = paddle.neg(label)
    out = paddle.multiply(neg_label, out)
1168 1169 1170

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
1171
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
1172 1173 1174 1175 1176
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
1177 1178 1179
        helper.append_op(type="relu",
                         inputs={"X": out},
                         outputs={"Out": result_out})
1180 1181 1182 1183
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
1184 1185 1186 1187
        helper.append_op(type="reduce_sum",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs=attrs)
1188 1189 1190
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
1191 1192 1193 1194
        helper.append_op(type="mean",
                         inputs={"X": out},
                         outputs={"Out": result_out},
                         attrs={})
1195 1196 1197
        return result_out


1198
def l1_loss(input, label, reduction='mean', name=None):
1199
    r"""
1200
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1201

1202
    If `reduction` set to ``'none'``, the loss is:
1203 1204

    .. math::
1205
        Out = \lvert input - label \rvert
1206

1207
    If `reduction` set to ``'mean'``, the loss is:
1208 1209

    .. math::
1210
        Out = MEAN(\lvert input - label \rvert)
1211

1212
    If `reduction` set to ``'sum'``, the loss is:
1213 1214

    .. math::
1215
        Out = SUM(\lvert input - label \rvert)
1216

1217

1218
    Parameters:
N
Noel 已提交
1219 1220
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1221
        reduction (str, optional): Indicate the reduction to apply to the loss,
1222
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1223 1224 1225
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1226 1227
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1228

1229
    Returns:
1230
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1231 1232
        If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1233

1234 1235
    Examples:
        .. code-block:: python
N
Noel 已提交
1236

1237
            import paddle
1238

1239 1240
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1241

1242
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1243
            print(l1_loss.numpy())
1244 1245
            # [0.35]

1246
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1247
            print(l1_loss.numpy())
1248 1249 1250
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

1251
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1252
            print(l1_loss.numpy())
1253 1254 1255 1256 1257 1258 1259
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

1260
    if in_dygraph_mode():
1261 1262
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1263
        if reduction == 'mean':
1264
            return _C_ops.mean_all(unreduced)
1265
        elif reduction == 'sum':
1266
            return _C_ops.sum(unreduced, [], None, False)
1267 1268
        else:
            return unreduced
1269
    elif _in_legacy_dygraph():
1270 1271 1272 1273 1274
        unreduced = _elementwise_op_in_dygraph(input,
                                               label,
                                               axis=-1,
                                               act='abs',
                                               op_name='elementwise_sub')
1275
        if reduction == 'mean':
1276
            return _legacy_C_ops.mean(unreduced)
1277
        elif reduction == 'sum':
1278 1279
            return _legacy_C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim',
                                            False, 'reduce_all', True)
1280 1281 1282
        else:
            return unreduced

1283 1284 1285 1286 1287 1288
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
    check_variable_and_dtype(label, 'label',
                             ['float32', 'float64', 'int32', 'int64'],
                             'l1_loss')
1289 1290

    if reduction == 'sum':
1291
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1292 1293
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
1294
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
1295 1296
        return paddle.mean(unreduced, name=name)
    else:
1297 1298 1299 1300
        return paddle.fluid.layers.elementwise_sub(input,
                                                   label,
                                                   act='abs',
                                                   name=name)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1323 1324
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1339

1340 1341 1342 1343
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1344 1345 1346 1347 1348
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1349
                log_out = log_softmax(input)
1350
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1351
                result = nll_loss(log_out, label)
1352
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1353 1354 1355 1356 1357 1358 1359 1360 1361
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
1362 1363
        raise ValueError(
            'Expected 2 or more dimensions (got {})'.format(input_dims))
1364 1365
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1366 1367
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1368 1369
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1370
            out_shape = [n] + input_shape[2:]
1371 1372
        out, total_weight = _C_ops.nll_loss(input, label, weight, ignore_index,
                                            reduction)
Z
zyfncg 已提交
1373
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1374
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1375
        return out
1376
    elif _in_legacy_dygraph():
1377
        if input_dims != 2 and input_dims != 4:
1378 1379 1380
            input, _ = _legacy_C_ops.reshape2(input, None, 'shape',
                                              [n, c, 1, -1])
            label, _ = _legacy_C_ops.reshape2(label, None, 'shape', [n, 1, -1])
1381
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1382

1383 1384 1385
        out, total_weight = _legacy_C_ops.nll_loss(input, label, weight,
                                                   'ignore_index', ignore_index,
                                                   'reduction', reduction)
1386
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1387
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', out_shape)
1388 1389 1390 1391 1392 1393 1394 1395 1396
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

1397 1398
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nll_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

1409 1410 1411 1412
    helper.append_op(type='nll_loss',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
1413 1414 1415 1416
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
1417 1418


1419
def kl_div(input, label, reduction='mean', name=None):
1420
    r"""
1421
    Calculate the Kullback-Leibler divergence loss
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
1432
    the same shape as input, loss in each point is calculated
1433
    separately and no reduction is applied.
1434

1435 1436
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
1437

1438 1439
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
1440 1441

    While :attr:`reduction` is :attr:`batchmean`, output loss is
1442 1443 1444 1445
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
1446
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1447 1448 1449 1450 1451 1452 1453 1454 1455
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
1456
        name(str, optional): Name for the operation (optional, default is None). For more information,
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1467

1468
            shape = (5, 20)
1469 1470
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1471

L
LielinJiang 已提交
1472
            # 'batchmean' reduction, loss shape will be [1]
1473
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1474
            # shape=[1]
1475

1476
            # 'mean' reduction, loss shape will be [1]
1477
            pred_loss = F.kl_div(x, target, reduction='mean')
1478 1479 1480
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1481
            pred_loss = F.kl_div(x, target, reduction='sum')
1482 1483 1484
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1485
            pred_loss = F.kl_div(x, target, reduction='none')
1486 1487 1488
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1489 1490 1491 1492
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
1493
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
1494 1495 1496
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
1497
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1498

1499
    if in_dygraph_mode():
1500
        out = _C_ops.kldiv_loss(input, label, 'none')
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
    elif _in_legacy_dygraph():
1511
        out = _legacy_C_ops.kldiv_loss(input, label, 'reduction', 'none')
1512 1513 1514 1515 1516 1517 1518 1519
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
1520 1521 1522 1523
        return out

    helper = LayerHelper('kl_div', **locals())

1524 1525
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div')
1526 1527 1528
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
1529 1530 1531 1532 1533 1534 1535
    helper.append_op(type='kldiv_loss',
                     inputs={
                         'X': input,
                         'Target': label
                     },
                     outputs={'Loss': loss},
                     attrs={'reduction': 'none'})
1536 1537 1538 1539 1540 1541 1542 1543

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
1544 1545 1546
    return loss


1547
def mse_loss(input, label, reduction='mean', name=None):
1548
    r"""
1549
    Accept input predications and label and returns the mean square error.
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1579
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1580

1581 1582 1583
    Examples:

        .. code-block:: python
1584

1585 1586
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1587 1588
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1589
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1590
            print(output)
1591 1592 1593 1594 1595 1596 1597 1598 1599
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
1600
    if not in_dynamic_mode():
1601 1602 1603 1604
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'mse_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'mse_loss')
1605 1606

    if reduction == 'none':
1607
        return paddle.square(paddle.subtract(input, label), name=name)
1608
    elif reduction == 'mean':
1609 1610
        return paddle.mean(paddle.square(paddle.subtract(input, label)),
                           name=name)
1611
    else:
1612
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1613
                          name=name)
1614 1615


1616 1617 1618 1619 1620
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1621
             reduction='mean',
H
Hui Zhang 已提交
1622
             norm_by_times=False):
1623 1624
    """

1625 1626 1627
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1628 1629 1630
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1631
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1632 1633 1634 1635 1636
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1637
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1638

1639 1640
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1680 1681 1682 1683
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1684

1685 1686 1687 1688
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1689
                reduction='none')
1690
            print(loss)  #[3.9179852 2.9076521]
1691

1692 1693 1694 1695 1696
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1697
            print(loss)  #[1.1376063]
1698 1699 1700

    """

1701
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1702
                                    input_lengths, label_lengths)
1703

Z
zhiboniu 已提交
1704
    loss_out = paddle.squeeze(loss_out, [-1])
1705 1706
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1707
        loss_out = paddle.mean(loss_out / label_lengths)
1708 1709 1710 1711 1712
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1713 1714 1715 1716 1717 1718 1719 1720 1721
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1722
    r"""
1723 1724
    .. math::

1725
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1726

1727
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1728 1729 1730 1731
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1732 1733 1734 1735
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1736 1737

    Args:
G
Guoxia Wang 已提交
1738
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1739
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1740 1741 1742 1743 1744
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1745
        group (Group, optional): The group instance return by paddle.distributed.new_group
1746 1747
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1748 1749 1750 1751 1752 1753 1754 1755
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1756 1757 1758 1759 1760 1761
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1762 1763 1764 1765

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1766
        :name: code-example1
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1815
        :name: code-example2
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

1862
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
1906 1907 1908 1909 1910 1911 1912
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1913 1914
        return

1915
    ring_id = 0
1916 1917
    rank = 0
    nranks = 1
1918 1919 1920 1921 1922 1923 1924 1925
    if group != False:
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1926 1927 1928 1929 1930

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
1931
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
1932 1933 1934 1935
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

1936
    if in_dygraph_mode():
1937 1938 1939 1940
        softmax, loss = _C_ops.margin_cross_entropy(logits, label,
                                                    return_softmax, ring_id,
                                                    rank, nranks, margin1,
                                                    margin2, margin3, scale)
1941 1942 1943 1944 1945 1946 1947 1948
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
1949
    elif _in_legacy_dygraph():
1950
        softmax, loss = _legacy_C_ops.margin_cross_entropy(
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    helper.append_op(type=op_type,
                     inputs={
                         'Logits': logits,
                         'Label': label
                     },
                     outputs={
                         'Softmax': softmax,
                         'Loss': loss
                     },
                     attrs={
                         'return_softmax': return_softmax,
                         'ring_id': ring_id,
                         'rank': rank,
                         'nranks': nranks,
                         'margin1': margin1,
                         'margin2': margin2,
                         'margin3': margin3,
                         'scale': scale,
                     })
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


2005 2006 2007 2008
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2009 2010 2011
    reason=
    ('Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
     'and "paddle.nn.functional.cross_entropy" is different.'))
2012 2013 2014 2015 2016 2017 2018
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
2019
    r"""
2020 2021
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2022 2023 2024 2025 2026 2027
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2028 2029 2030
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2057 2058 2059
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2060 2061 2062 2063 2064
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2065
                                      if :attr:`soft_label` is set to :attr:`False`.
2066 2067 2068
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2069 2070 2071
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2072 2073 2074 2075 2076
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2077
        axis (int, optional): The index of dimension to perform softmax calculations. It
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
    """
2104 2105 2106 2107 2108
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


2109 2110 2111 2112
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
2113 2114 2115
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
2116
                  use_softmax=True,
2117
                  name=None):
2118
    r"""
2119 2120 2121
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2122

2123
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
2124

2125 2126
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
2127
    parameters for details.
2128

2129
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
2130
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2131
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2132

2133
    The calculation of this operator includes the following two steps.
2134

2135
    - **1.softmax cross entropy**
2136

2137
        1. Hard label (each sample can only be assigned into one category)
2138

2139
        1.1. when use_softmax=True
2140

2141 2142
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2185
                \\loss_j=loss_j*weight[label_j]
2186

2187

2188 2189 2190 2191 2192 2193 2194
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2195
            2.1 if the ``reduction`` parameter is ``none``
2196 2197 2198

                Return the previous result directly

2199
            2.2 if the ``reduction`` parameter is ``sum``
2200 2201 2202 2203 2204 2205

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2206 2207
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2208

2209
            2.3.1. If the  ``weight``  parameter is ``None``
2210 2211 2212

                   Return the average value of the previous results

2213
            .. math::
2214 2215 2216 2217 2218 2219 2220 2221
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2222
            .. math::
2223
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2224 2225 2226

            2. Soft labels (soft_label = True)

2227
            .. math::
2228
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2229 2230


2231
    Parameters:
2232 2233 2234 2235

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
2236
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
2237

2238
            Note:
2239

2240
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
2241 2242 2243
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
2244

2245 2246 2247 2248 2249 2250
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2251
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2252 2253 2254 2255
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

2256 2257
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
2258 2259 2260 2261 2262
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
2263 2264
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2265 2266 2267 2268 2269
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
2270 2271
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2272
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2273 2274
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2275

2276 2277
        - **soft_label** (bool, optional)

2278
            Indicate whether label is soft.
2279 2280 2281 2282
            Default is ``False``.

        - **axis** (int, optional)

2283 2284 2285
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2286 2287 2288 2289 2290 2291 2292
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
2293
        - **name** (str, optional)
2294 2295 2296

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
2297 2298 2299

    Returns:

2300 2301
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2302

2303
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2304

2305
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2306

2307
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2308

2309
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2310 2311


2312
    Examples:
2313 2314

        .. code-block:: python
2315 2316

            # hard labels
2317 2318 2319 2320 2321
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2322
            input =  paddle.rand([N, C], dtype='float64')
2323
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2324 2325
            weight = paddle.rand([C], dtype='float64')

2326 2327 2328 2329 2330 2331 2332 2333
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

        .. code-block:: python
2334 2335

            # soft labels
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2349 2350 2351
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
2352 2353 2354 2355
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
2356

2357 2358 2359 2360
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2361 2362 2363
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
2364 2365 2366 2367 2368 2369
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

2370
    input_dims = len(list(input.shape))
2371 2372 2373
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2374 2375
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
2376
        raise ValueError(
2377 2378 2379 2380
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2381

2382
    if in_dygraph_mode():
H
HydrogenSulfate 已提交
2383
        if soft_label == False:
2384 2385
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
H
HydrogenSulfate 已提交
2386 2387 2388
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
2389 2390
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
2391
            if label_max >= input.shape[axis]:
2392 2393
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
2394
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2395
            if soft_label == False:
2396
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2397 2398 2399 2400
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2401
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2402 2403 2404
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2405
        else:
2406 2407 2408
            _, out = _C_ops.cross_entropy_with_softmax(input, label, soft_label,
                                                       use_softmax, True,
                                                       ignore_index, axis)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
            if soft_label == True:
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2427
                out = _C_ops.multiply(out, weight_gather_reshape)
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
                        axis] == 1:
                    # TODO: Temporarily use squeeze instead of squeeze_
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
                if axis != -1 and axis != valid_label.ndim - 1:
                    temp_perm = list(range(axis % valid_label.ndim)) \
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
                                + [axis % valid_label.ndim]
2447
                    weight_gather = _C_ops.gather_nd(
2448 2449
                        weight, valid_label.transpose(temp_perm))
                else:
2450 2451 2452
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
                weight_gather = _C_ops.multiply(weight_gather,
                                                ignore_weight_mask)
2453 2454 2455 2456
                input_shape = list(label.shape)
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
2457
                out = _C_ops.multiply(out, weight_gather_reshape)
2458 2459 2460 2461 2462

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2463
            return _C_ops.sum(out, [], None, False)
2464 2465 2466 2467 2468 2469 2470 2471
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
            if ignore_index >= 0:
2472
                out_sum = _C_ops.sum(out, [], None, False)
2473 2474 2475 2476 2477 2478
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                mask = (label != ignore_index)
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2479
                    count = _C_ops.sum(mask, [], None, False)
2480 2481 2482
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2483 2484 2485
                    weight_ignored = _C_ops.multiply(mask,
                                                     weight_gather_reshape)
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2486 2487 2488
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2489 2490 2491
                out_sum = _C_ops.sum(out, [], None, False)
                total_weight = _C_ops.sum(weight_gather_reshape, [], None,
                                          False)
2492 2493
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2494
                return _C_ops.mean_all(out)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

    elif _in_legacy_dygraph():
        if soft_label == False:
            valid_label = paddle.cast(label != ignore_index,
                                      dtype=label.dtype) * label
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
            if label_max >= input.shape[axis]:
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
            if soft_label == False:
2515
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2516 2517 2518 2519
                    input, valid_label, 'soft_label', soft_label,
                    'ignore_index', ignore_index, 'numeric_stable_mode', True,
                    'axis', axis, 'use_softmax', use_softmax)
            else:
2520
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2521 2522 2523
                    input, label, 'soft_label', soft_label, 'ignore_index',
                    ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                    'use_softmax', use_softmax)
2524
        else:
2525
            _, out = _legacy_C_ops.softmax_with_cross_entropy(
2526 2527 2528
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
2529

2530
        if weight is not None:
2531

H
HydrogenSulfate 已提交
2532
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2533 2534
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
2535
                # weight's shape is C, where C is class num.
2536 2537
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2538 2539 2540 2541 2542
                weight_gather = paddle.matmul(x=paddle.cast(
                    label, weight.dtype),
                                              y=weight,
                                              transpose_x=False,
                                              transpose_y=True)
2543 2544 2545 2546
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2547
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2548 2549

            else:
2550 2551 2552 2553 2554 2555 2556
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
2557 2558
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
2559
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2560
                        axis] == 1:
H
HydrogenSulfate 已提交
2561
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
2562 2563
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
2564
                if axis != -1 and axis != valid_label.ndim - 1:
2565
                    temp_perm = list(range(axis % valid_label.ndim)) \
2566
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
2567
                                + [axis % valid_label.ndim]
2568
                    weight_gather = _legacy_C_ops.gather_nd(
2569 2570
                        weight, valid_label.transpose(temp_perm))
                else:
2571 2572 2573
                    weight_gather = _legacy_C_ops.gather_nd(weight, valid_label)
                weight_gather = _legacy_C_ops.elementwise_mul(
                    weight_gather, ignore_weight_mask)
2574
                input_shape = list(label.shape)
2575 2576
                weight_gather_reshape = reshape(weight_gather,
                                                shape=input_shape)
2577
                out = paddle.cast(out, weight_gather_reshape.dtype)
2578
                out = _legacy_C_ops.elementwise_mul(out, weight_gather_reshape)
2579

2580
        if reduction == "sum":
H
HydrogenSulfate 已提交
2581
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
2582 2583
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2584
            return _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
2585
        elif reduction == "mean":
H
HydrogenSulfate 已提交
2586 2587 2588 2589 2590 2591
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
S
sneaxiy 已提交
2592
            if ignore_index >= 0:
2593
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
2594 2595 2596
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
2597
                mask = (label != ignore_index)
2598
                if weight is None:
2599
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2600
                    count = _legacy_C_ops.reduce_sum(mask, 'reduce_all', True)
2601
                    ret = out_sum / (count + (count == 0.0))
2602 2603
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2604
                    weight_ignored = _legacy_C_ops.elementwise_mul(
2605
                        mask, weight_gather_reshape)
2606 2607
                    weight_sum = _legacy_C_ops.reduce_sum(
                        weight_ignored, 'reduce_all', True)
2608
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2609 2610
                return ret
            elif weight is not None:
2611 2612 2613
                out_sum = _legacy_C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _legacy_C_ops.reduce_sum(weight_gather_reshape,
                                                        'reduce_all', True)
2614
                return out_sum / (total_weight + (total_weight == 0.0))
2615
            else:
2616
                return _legacy_C_ops.mean(out)
2617
        else:
2618 2619
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
2620
            return out
2621

F
feifei-111 已提交
2622
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
2623 2624
                             'softmax_cross_entropy')
    check_variable_and_dtype(
2625 2626
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
2627
        'softmax_cross_entropy')
2628 2629 2630 2631 2632
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
2633
        'use_softmax': use_softmax
2634 2635 2636 2637
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
2638 2639 2640 2641 2642

    outputs = {'Softmax': softmax, 'Loss': out}
    if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
        backprop = helper.create_variable_for_type_inference(dtype=input.dtype)
        outputs['Backprop'] = backprop
2643 2644 2645 2646 2647 2648 2649
    helper.append_op(type='softmax_with_cross_entropy',
                     inputs={
                         'Logits': input,
                         'Label': label
                     },
                     outputs=outputs,
                     attrs=attrs)
2650

2651
    if weight is not None:
2652 2653
        check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                 'softmax_cross_entropy')
2654
        weight_name = name if reduction == 'none' else None
2655 2656
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
2657
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2658 2659 2660
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2661 2662 2663 2664
            weight_gather = paddle.matmul(x=paddle.cast(label, weight.dtype),
                                          y=weight,
                                          transpose_x=False,
                                          transpose_y=True)
2665 2666 2667 2668 2669

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
2670 2671
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
2672 2673
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
2674
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
2675

H
HydrogenSulfate 已提交
2676
            valid_label = paddle.multiply(
2677
                paddle.cast(label != ignore_index, dtype=label.dtype), label)
H
HydrogenSulfate 已提交
2678 2679
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
2680
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
2681 2682
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
2683
            if axis != -1 and axis != valid_label.ndim - 1:
2684
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
2685
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
2686 2687 2688 2689 2690
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
2691 2692
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

2693 2694
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
2695
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2696

2697 2698 2699
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
S
sneaxiy 已提交
2700
        if ignore_index >= 0:
2701
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2702 2703 2704
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
2705 2706 2707 2708
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
2709
                ret = out_sum / (count + (count == 0.0))
2710 2711 2712 2713
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
2714
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
2715 2716
            return ret
        elif weight is not None:
2717 2718
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
2719
            return out_sum / (total_weight + (total_weight == 0.0))
2720 2721
        else:
            return paddle.mean(out, name=name)
2722

2723
    else:
2724 2725 2726
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

2727
        return out
2728 2729 2730 2731 2732 2733 2734 2735 2736


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
2737
    r"""
2738 2739 2740 2741 2742 2743
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2744
    This operator measures focal loss function as follows:
2745 2746

    .. math::
2747
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2748

2749
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2750 2751 2752 2753 2754

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2755
           Out = \frac{Out}{normalizer}
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
2773
            For object detection task, it is the number of positive samples.
2774 2775
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2776
            it should be between 0 and 1.  Default value is set to 0.25.
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2801
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2802
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2803
            print(output)  # [0.65782464]
2804 2805 2806 2807 2808 2809 2810 2811 2812

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
2813 2814
        check_variable_and_dtype(normalizer, 'normalizer',
                                 ['float32', 'float64'], 'sigmoid_focal_loss')
2815 2816 2817 2818
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2819 2820
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}."
                .format(normalizer_dims))
2821

2822 2823
    if in_dygraph_mode():
        place = _current_expected_place()
2824
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2825

2826 2827
        loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label, False,
                                                        -100)
2828

2829
        pred = _C_ops.sigmoid(logit)
2830

2831 2832 2833 2834
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
            _C_ops.multiply(_C_ops.subtract(one, pred),
                            _C_ops.subtract(one, label)))
2835 2836

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2837 2838 2839 2840 2841
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
            _C_ops.multiply(_C_ops.subtract(one, alpha),
                            _C_ops.subtract(one, label)))
        loss = _C_ops.multiply(alpha_t, loss)
2842 2843

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2844 2845
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
2846 2847

        if normalizer is not None:
2848
            loss = _C_ops.divide(loss, normalizer)
2849 2850

        if reduction == "sum":
2851
            return _C_ops.sum(loss, [], None, False)
2852
        elif reduction == "mean":
2853
            return _C_ops.mean_all(loss)
2854 2855 2856 2857 2858

        return loss

    elif _in_legacy_dygraph():
        one = _varbase_creator(dtype=logit.dtype)
2859 2860 2861 2862
        _legacy_C_ops.fill_constant(one, 'value', float(1.0), 'force_cpu',
                                    False, 'dtype', one.dtype, 'str_value',
                                    '1.0', 'shape', logit.shape)
        loss = _legacy_C_ops.sigmoid_cross_entropy_with_logits(logit, label)
2863

2864
        pred = _legacy_C_ops.sigmoid(logit)
2865

2866 2867 2868 2869 2870
        p_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(pred, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, pred),
                _legacy_C_ops.elementwise_sub(one, label)))
2871 2872

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2873 2874 2875 2876 2877 2878
        alpha_t = _legacy_C_ops.elementwise_add(
            _legacy_C_ops.elementwise_mul(alpha, label),
            _legacy_C_ops.elementwise_mul(
                _legacy_C_ops.elementwise_sub(one, alpha),
                _legacy_C_ops.elementwise_sub(one, label)))
        loss = _legacy_C_ops.elementwise_mul(alpha_t, loss)
2879 2880

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2881 2882 2883
        gamma_t = _legacy_C_ops.elementwise_pow(
            _legacy_C_ops.elementwise_sub(one, p_t), gamma)
        loss = _legacy_C_ops.elementwise_mul(gamma_t, loss)
2884 2885

        if normalizer is not None:
2886
            loss = _legacy_C_ops.elementwise_div(loss, normalizer)
2887 2888

        if reduction == "sum":
2889
            return _legacy_C_ops.reduce_sum(loss, 'reduce_all', True)
2890
        elif reduction == "mean":
2891
            return _legacy_C_ops.mean(loss)
2892 2893 2894

        return loss

2895 2896 2897 2898
    check_variable_and_dtype(logit, 'logit', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'sigmoid_focal_loss')
2899 2900 2901 2902 2903 2904 2905

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2906
    pred = paddle.nn.functional.sigmoid(logit)
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2925 2926


Y
yangguohao 已提交
2927 2928 2929 2930 2931 2932
def multi_label_soft_margin_loss(input,
                                 label,
                                 weight=None,
                                 reduction="mean",
                                 name=None):
    r"""
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

	Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            weight:N-D Tensor, the shape is [N,1]
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

	Returns:
            Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.

	Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                # label elements in {1., -1.}
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
                loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])
                loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
                print(loss)
                # Tensor([1.54908717])
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not (input.shape == label.shape):
        raise ValueError("The input and label should have same dimension,"
                         "but received {}!={}".format(input.shape, label.shape))

    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'multilabel_soft_margin_loss')

    loss = -(label * paddle.nn.functional.log_sigmoid(input) +
             (1 - label) * paddle.nn.functional.log_sigmoid(-input))

    if weight is not None:
        if not _non_static_mode():
            check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                                     'multilabel_soft_margin_loss')
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3020 3021
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3022
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

3099
    if not _non_static_mode():
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222


def cosine_embedding_loss(input1,
                          input2,
                          label,
                          margin=0,
                          reduction='mean',
                          name=None):
    r"""
    This operator computes the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

     Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
            "1D target tensor expected, multi-target not supported")

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
            "different sizes")

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
            "The data type of input Variable must be 'float32' or 'float64'")
    if label.dtype not in [
            paddle.int32, paddle.int64, paddle.float32, paddle.float64
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251


def triplet_margin_with_distance_loss(input,
                                      positive,
                                      negative,
                                      distance_function=None,
                                      margin=1.0,
                                      swap=False,
                                      reduction='mean',
                                      name=None):
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3252
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3268

Y
yangguohao 已提交
3269 3270
	    margin (float, optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0.
3271

Y
yangguohao 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3283

Y
yangguohao 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError("'reduction' in 'triplet_margin_with_distance_loss' "
                         "should be 'sum', 'mean' or 'none', "
                         "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_with_distance_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = distance_function if distance_function is not None \
        else paddle.nn.PairwiseDistance(2)

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
            "The distance functions should be checked.")

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470


def triplet_margin_loss(input,
                        positive,
                        negative,
                        margin=1.0,
                        p=2,
                        epsilon=1e-6,
                        swap=False,
                        reduction='mean',
                        name=None):
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
    if not _non_static_mode():
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(positive, 'positive', ['float32', 'float64'],
                                 'triplet_margin_loss')
        check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
                                 'triplet_margin_loss')

    if not (input.shape == positive.shape == negative.shape):
        raise ValueError("input's shape must equal to "
                         "positive's shape and  "
                         "negative's shape")

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549


def soft_margin_loss(input, label, reduction='mean', name=None):
    """
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        input (Tensor): The input predications tensor with shape: [N, *],
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
             Available dtype is float32, float64.

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

    if not _non_static_mode():
        fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                   ['float32', 'float64'],
                                                   'soft_margin_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss')

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to "
                         "label's shape")

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out