nn.py 160.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
W
wanghaoshuang 已提交
28 29 30 31 32 33 34 35 36 37 38 39
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'batch_norm',
    'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
W
whs 已提交
40
    'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
41 42
    'image_resize_short', 'resize_bilinear', 'gather', 'random_crop',
    'mean_iou', 'relu', 'log'
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
51
       use_mkldnn=False,
Y
Yu Yang 已提交
52
       act=None,
J
Jacek Czaja 已提交
53
       is_test=False,
54
       name=None):
Y
Yu Yang 已提交
55
    """
56
    **Fully Connected Layer**
Y
Yu Yang 已提交
57

C
caoying03 已提交
58
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
59 60 61 62 63 64
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
65
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
66

C
caoying03 已提交
67
    This process can be formulated as follows:
68 69 70

    .. math::

71
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
72 73 74

    In the above equation:

C
caoying03 已提交
75 76 77 78
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
79
    * :math:`Act`: The activation function.
C
caoying03 已提交
80
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
81 82

    Args:
R
ranqiu 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
100
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
101 102
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
103
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
104

105
    Returns:
R
ranqiu 已提交
106
        A tensor variable storing the transformation result.
107 108

    Raises:
C
caoying03 已提交
109
        ValueError: If rank of the input tensor is less than 2.
110 111 112 113

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
114 115
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
116
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
117
    """
C
caoying03 已提交
118

C
caoying03 已提交
119
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
120 121 122 123

    dtype = helper.input_dtype()

    mul_results = []
124 125
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
126 127 128
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
129

Y
Yu Yang 已提交
130
        w = helper.create_parameter(
131 132
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
133
        helper.append_op(
134 135 136
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
137
            outputs={"Out": tmp},
M
mozga-intel 已提交
138 139
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
140 141 142 143
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
144
    else:
145 146 147 148 149 150 151
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
152 153


154 155 156
def embedding(input,
              size,
              is_sparse=False,
157
              is_distributed=False,
158 159 160
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
161
    """
162 163
    **Embedding Layer**

164
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
165 166
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
167 168 169

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
170 171

    Args:
172 173 174 175 176
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
177
        is_distributed (bool): Whether to run lookup table from remote parameter server.
178 179
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
180 181
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
182 183
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
184
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
185

186 187 188
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
189

190 191
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
192

C
chengduoZH 已提交
193
          dict_size = len(dataset.ids)
194
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
195
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
196 197 198 199 200 201
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
202 203
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
204 205 206 207 208
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
209 210 211 212 213
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
214 215 216 217 218
    return tmp


def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
219 220
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
221 222 223 224 225 226 227
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
228 229
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
230 231 232 233 234 235
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
236
    .. math::
Y
Yibing Liu 已提交
237

238
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
239

240
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
241

242
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
243

244 245 246
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
247

Y
Yibing Liu 已提交
248
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
249

250
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
251
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
252 253 254
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
255
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
256 257
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
258 259
    all of which have the same size as the cell output activation vector :math:`h`.

260 261 262 263
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
264 265 266
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
267 268 269
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
270 271 272
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
273 274

    Args:
275 276 277 278
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
279 280
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
Y
Yancey 已提交
281 282 283 284 285 286 287
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

288
        param_attr(ParamAttr|None): The parameter attribute for the learnable
289
                               hidden-hidden weights.
Y
Yibing Liu 已提交
290 291 292

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
293 294 295
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
296 297 298
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
299

300
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
301
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
302
                                - The shape is (1 x 4D).
303
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
304 305
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
306
                                - The shape is (1 x 7D).
307
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
308 309
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
310 311
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
312
                              "identity"], default "sigmoid".
313
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
314 315
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
316 317
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
318 319
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
320 321
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
322 323

    Returns:
Y
Yibing Liu 已提交
324 325
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
326

Y
Yibing Liu 已提交
327
    Examples:
Y
Yibing Liu 已提交
328 329
        .. code-block:: python

Y
Yibing Liu 已提交
330 331
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
332
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
333 334
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
335
    """
336

Y
Yu Yang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
351 352 353 354 355 356 357 358 359 360
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
361 362 363

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
364
        inputs=inputs,
Y
Yu Yang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
381 382 383 384 385 386 387 388 389 390 391
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
392 393
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
394 395 396
    """
    **Dynamic LSTMP Layer**

397 398 399 400 401 402
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
403 404 405 406 407

    The formula is as follows:

    .. math::

408
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
409

410
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
411

412
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
413

414
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
415

416
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
417

418
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
419

420
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
421

Y
Yibing Liu 已提交
422 423 424 425 426 427
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
428
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
429
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
430
          bias vector).
Y
Yibing Liu 已提交
431 432 433
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
434
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
435
    * :math:`h`: The hidden state.
436
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
437 438
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
439
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
440
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
441
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
442 443
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
444 445 446 447

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
448

Y
Yibing Liu 已提交
449 450 451 452 453 454 455 456 457 458 459 460
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
461
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
462 463
                               hidden-hidden weight and projection weight.

464 465
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
466 467
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
468 469
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
470 471
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
472 473 474 475 476 477
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
478
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
479 480 481
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
482
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
483 484 485 486 487 488 489 490 491
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
492 493
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
494 495
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
496 497
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
498 499
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
500 501
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
502 503

    Returns:
504 505
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
506 507 508 509 510
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
511
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
512 513
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
514 515 516
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
517 518 519 520
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
521
    """
522

Y
Yibing Liu 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
569 570 571 572 573 574 575 576 577 578 579
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

580
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
581
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
582

G
guosheng 已提交
583 584 585 586 587 588 589 590 591
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
592

G
guosheng 已提交
593
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
594

G
guosheng 已提交
595
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
596 597
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
598 599 600 601
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
602
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
603 604

    Args:
605 606
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
607
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
608
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
609 610
            is the hidden size.
        size(int): The dimension of the gru cell.
611
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
612 613
            hidden-hidden weight matrix. Note:

614
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
615
              :math:`D` is the hidden size.
616
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
617
              The first part are weights of the update gate and reset gate with
618
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
619
              candidate hidden state with shape :math:`(D \\times D)`.
620
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
621
            hidden-hidden bias.
622
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
623 624 625
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
626
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
627
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
628
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
629 630

    Returns:
G
guosheng 已提交
631 632
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
633

G
guosheng 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
649
    batch_size = input.shape[0]
G
guosheng 已提交
650 651 652
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
653 654 655
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
679 680 681
def gru_unit(input,
             hidden,
             size,
682 683
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
684
             activation='tanh',
685
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
686
    """
687
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
688

689 690
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
691

692
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
693

694
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
695

696
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
697 698

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
699 700 701
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
702 703
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

704 705
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
706 707 708
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
709 710 711 712 713

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
714 715
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
716 717 718 719
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
720

721 722 723 724 725 726
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
727

728
             # assuming we have x_t_data and prev_hidden of size=10
729
             x_t = fluid.layers.fc(input=x_t_data, size=30)
730 731
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
747 748
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
749

750 751 752 753
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
754
    # create bias
755
    if helper.bias_attr:
Y
Yu Yang 已提交
756 757 758
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
759
        inputs['Bias'] = bias
Y
Yu Yang 已提交
760 761 762

    helper.append_op(
        type='gru_unit',
763
        inputs=inputs,
Y
Yu Yang 已提交
764 765 766 767 768 769
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
770 771
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
772 773 774 775 776
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
777
@templatedoc()
778
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
818
@templatedoc()
819
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
820 821 822 823 824 825 826 827 828 829 830
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
844
def cos_sim(X, Y):
Y
Yu Yang 已提交
845 846 847
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
848 849 850 851 852 853 854

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
    
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
855
    """
F
fengjiayi 已提交
856
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


870
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
871 872 873 874 875 876 877 878 879 880
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
881 882 883 884 885 886 887 888 889
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
890 891 892 893 894 895 896 897 898 899 900

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
901
    helper = LayerHelper('dropout', **locals())
902 903 904 905 906 907 908
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
909 910 911 912 913 914
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
915 916 917
    return out


F
fengjiayi 已提交
918
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
919
    """
Y
Yibing Liu 已提交
920 921
    **Cross Entropy Layer**

922 923 924
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
925 926

    1) One-hot cross-entropy:
F
fengjiayi 已提交
927
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
928

Y
Yibing Liu 已提交
929
        .. math::
Y
yangyaming 已提交
930

Y
Yibing Liu 已提交
931 932 933
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
934 935
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
936 937 938 939 940

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
941
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
942 943 944
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
945 946
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
947
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
948

Y
Yibing Liu 已提交
949
    Args:
Y
yangyaming 已提交
950
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
951 952 953 954
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
955
        label (Variable|list): the ground truth which is a 2-D tensor. When
956 957 958 959
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
960
        soft_label (bool): a flag indicating whether to
961 962
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
963 964 965 966 967

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
968 969 970 971 972
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
973 974 975 976 977 978

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
979
    """
F
fengjiayi 已提交
980
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
981 982 983 984 985 986
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
987
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
988 989 990
    return out


F
fengjiayi 已提交
991
def square_error_cost(input, label):
Y
Yu Yang 已提交
992
    """
993 994
    **Square error cost layer**

995 996
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1011 1012
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1013 1014

    Returns:
G
guosheng 已提交
1015
        Variable: The tensor variable storing the element-wise squared error \
1016
                  difference of input and label.
1017 1018 1019 1020 1021 1022 1023 1024

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1025
    """
F
fengjiayi 已提交
1026
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1036 1037
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1038 1039 1040
    return square_out


1041
@templatedoc()
Y
Yu Yang 已提交
1042 1043 1044 1045
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1046
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1047
    """
Y
yangyaming 已提交
1048
    This function computes and outputs the precision, recall and
1049
    F1-score of chunk detection.
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1062
    """
F
fengjiayi 已提交
1063
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1064 1065 1066 1067 1068

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1069 1070 1071
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077 1078 1079

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1080 1081 1082 1083
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1084 1085 1086
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1087 1088
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1089
        })
1090 1091
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1092 1093


1094
@templatedoc()
Y
Yu Yang 已提交
1095 1096 1097 1098 1099 1100 1101
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1102
                  act=None):
Y
Yu Yang 已提交
1103 1104 1105 1106
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1161
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1173 1174 1175
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1176 1177
           stride=1,
           padding=0,
1178
           dilation=1,
Y
Yu Yang 已提交
1179 1180 1181
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1182
           use_cudnn=True,
1183
           use_mkldnn=False,
1184 1185
           act=None,
           name=None):
Y
Yu Yang 已提交
1186
    """
C
chengduoZH 已提交
1187 1188 1189
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1190 1191 1192
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1193 1194
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1195 1196 1197
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1198

1199
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1200

C
chengduoZH 已提交
1201 1202
    .. math::

C
refine  
chengduoZH 已提交
1203
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1204

C
chengduoZH 已提交
1205
    In the above equation:
C
chengduoZH 已提交
1206

1207 1208 1209 1210 1211
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1212 1213
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1214 1215 1216

    Example:

1217 1218
        - Input:

W
weixing02 已提交
1219
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1220

W
weixing02 已提交
1221
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1222

1223
        - Output:
W
weixing02 已提交
1224
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1225

C
chengduoZH 已提交
1226
        Where
1227 1228

        .. math::
C
chengduoZH 已提交
1229

W
weixing02 已提交
1230 1231
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1232 1233

    Args:
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        input (Variable): The input image with [N, C, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1262 1263

    Returns:
G
guosheng 已提交
1264
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1265 1266
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1267
    Raises:
1268 1269
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1270

C
chengduoZH 已提交
1271 1272 1273
    Examples:
        .. code-block:: python

1274 1275 1276 1277
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1278 1279 1280 1281 1282
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1283 1284

    l_type = 'conv2d'
X
xzl 已提交
1285 1286
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1287
        l_type = 'depthwise_conv2d'
1288 1289 1290 1291

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1292 1293 1294 1295 1296 1297 1298
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1299 1300 1301
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1302
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1303

C
chengduoZH 已提交
1304 1305
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1323
        type=l_type,
Y
Yu Yang 已提交
1324 1325 1326 1327 1328
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1329 1330 1331
        attrs={
            'strides': stride,
            'paddings': padding,
1332
            'dilations': dilation,
C
chengduoZH 已提交
1333
            'groups': groups,
1334 1335
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1336
        })
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1343
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1344
    """
Y
yangyaming 已提交
1345 1346 1347
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1373 1374
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1375

L
Luo Tao 已提交
1376 1377
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1378
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1379 1380 1381 1382 1383 1384 1385 1386
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1387

Y
yangyaming 已提交
1388
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1389 1390 1391 1392 1393
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1394 1395
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1396
    """
F
fengjiayi 已提交
1397
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1409 1410 1411 1412 1413
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1414 1415 1416
    return pool_out


F
fengjiayi 已提交
1417
def sequence_first_step(input):
L
Luo Tao 已提交
1418
    """
L
Luo Tao 已提交
1419
    This function gets the first step of sequence.
L
Luo Tao 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1432

L
Luo Tao 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1442

Y
yangyaming 已提交
1443
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1444 1445 1446
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1447 1448 1449
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1450
def sequence_last_step(input):
L
Luo Tao 已提交
1451
    """
L
Luo Tao 已提交
1452
    This function gets the last step of sequence.
L
Luo Tao 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1465

L
Luo Tao 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1475

Y
yangyaming 已提交
1476
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1477 1478 1479
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1480 1481 1482
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1483
def pool2d(input,
C
chengduoZH 已提交
1484 1485
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1486 1487
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1488
           global_pooling=False,
C
chengduoZH 已提交
1489
           use_cudnn=True,
1490
           ceil_mode=False,
1491
           use_mkldnn=False,
C
caoying03 已提交
1492
           name=None):
Y
Yu Yang 已提交
1493 1494 1495
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1512 1513 1514 1515 1516
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1517

C
chengduoZH 已提交
1518 1519 1520 1521 1522
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1523 1524 1525 1526
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1527 1528
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1543
            "paddings": pool_padding,
1544
            "use_cudnn": use_cudnn,
1545 1546
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1559
               data_layout='NCHW',
Y
Yang Yang 已提交
1560
               in_place=False,
1561
               use_mkldnn=False,
1562 1563
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1564
               moving_variance_name=None,
W
wanghaoshuang 已提交
1565
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1566 1567 1568
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1611
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1612

1613 1614
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1615 1616 1617
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1618
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1619
        shape=param_shape,
1620 1621 1622 1623 1624 1625 1626
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1627
            trainable=False,
W
wanghaoshuang 已提交
1628
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1629
        shape=param_shape,
1630 1631
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1638 1639
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1640

Y
Yang Yang 已提交
1641
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1659 1660 1661 1662 1663 1664
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1665 1666 1667 1668

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1681
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1702
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1703
            normalization.
1704
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1705
            normalization.
1706
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1707
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1708
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1709 1710 1711 1712 1713 1714
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
1715
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1741
    if shift:
G
guosheng 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1766
def beam_search_decode(ids, scores, name=None):
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
    
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1798 1799 1800
                     padding=0,
                     stride=1,
                     dilation=1,
1801
                     groups=None,
C
caoying03 已提交
1802
                     param_attr=None,
1803
                     bias_attr=None,
C
chengduoZH 已提交
1804
                     use_cudnn=True,
1805
                     act=None,
C
caoying03 已提交
1806
                     name=None):
Y
Yu Yang 已提交
1807
    """
1808 1809 1810 1811 1812 1813 1814 1815
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1816 1817
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1830 1831
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1846

1847 1848 1849 1850
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1851 1852

    Args:
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
1886 1887

    Returns:
1888
        Variable: The tensor variable storing the convolution transpose result.
1889 1890

    Raises:
1891 1892
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
1893 1894 1895 1896

    Examples:
       .. code-block:: python

1897 1898 1899 1900
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1901 1902 1903 1904 1905 1906
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1907 1908 1909
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1910

C
chengduoZH 已提交
1911 1912 1913
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1914 1915 1916 1917 1918 1919 1920 1921
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1922 1923 1924 1925 1926

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1927
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1928 1929 1930
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1931

1932 1933
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1934 1935 1936
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1937
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1938 1939 1940 1941
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1942
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1943 1944 1945 1946
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
1947
            'groups': groups,
C
chengduoZH 已提交
1948 1949
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1950

1951 1952
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1953
    return out
Y
yangyaming 已提交
1954 1955


Y
yangyaming 已提交
1956
def sequence_expand(x, y, ref_level=-1, name=None):
1957
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1958 1959 1960 1961
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1962 1963 1964 1965 1966

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1967 1968
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1969 1970 1971 1972 1973 1974
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1975
            ref_level: 0
1976

Y
yangyaming 已提交
1977 1978 1979
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1980 1981 1982 1983
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1984
                x.data = [[a], [b], [c]]
1985 1986 1987
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1988
                y.lod = [[0, 2, 2, 5]]
1989

Y
yangyaming 已提交
1990
            ref_level: -1
1991

Y
yangyaming 已提交
1992 1993 1994
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1995 1996 1997
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1998 1999
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2000
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2001
                        will be named automatically.
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2012
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2013
    """
Y
yangyaming 已提交
2014
    helper = LayerHelper('sequence_expand', input=x, **locals())
2015 2016 2017
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2018 2019 2020 2021 2022
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2023
    return tmp
2024 2025


Q
Qiao Longfei 已提交
2026 2027 2028
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
    
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2069 2070 2071 2072
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2073
              param_attr=None,
C
caoying03 已提交
2074 2075
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2076 2077 2078 2079
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2080
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2081

2082
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2083

2084
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2085

2086
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2087 2088 2089

            h_t & = o_t tanh(c_t)

2090 2091 2092 2093 2094 2095
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2096 2097 2098

        .. math::

2099
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2100 2101 2102 2103 2104 2105 2106 2107

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2108
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2109 2110

    Args:
Y
yangyaming 已提交
2111 2112 2113 2114 2115 2116
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2117
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2118 2119
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2120 2121
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2122 2123
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2124 2125

    Returns:
Y
yangyaming 已提交
2126
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2127 2128

    Raises:
2129 2130 2131 2132
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2133 2134 2135 2136 2137 2138

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2139
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2140
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2141
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2158
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2159 2160 2161 2162
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2163 2164
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2165 2166 2167
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2168
    size = cell_t_prev.shape[1]
2169
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2170 2171
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2172
                param_attr=param_attr,
2173
                bias_attr=bias_attr)
Y
yangyaming 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2186
    return h, c
G
guosheng 已提交
2187 2188


C
caoying03 已提交
2189
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2190
    """
Y
yangyaming 已提交
2191
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2192 2193 2194

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2195
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2196 2197
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2198 2199
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2200
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2201
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2202
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2203 2204
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2205 2206 2207

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2208

G
guosheng 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2220 2221 2222 2223 2224 2225 2226 2227

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2228 2229 2230
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2231 2232
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2233 2234 2235 2236 2237
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2238
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2239 2240 2241 2242
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2243 2244


C
caoying03 已提交
2245
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2246
    """
Y
yangyaming 已提交
2247
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2248 2249 2250

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2251
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2252 2253 2254
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2255
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2256 2257
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2258
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2259 2260
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2261 2262 2263

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2264

G
guosheng 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2275 2276
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2277 2278 2279 2280 2281 2282 2283

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2284 2285 2286
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2287 2288
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2289 2290 2291 2292 2293
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2294
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2295 2296 2297 2298
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2299 2300


C
caoying03 已提交
2301
def reduce_max(input, dim=None, keep_dim=False, name=None):
2302
    """
Y
yangyaming 已提交
2303
    Computes the maximum of tensor elements over the given dimension.
2304 2305 2306

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2307
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2308 2309 2310
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2311
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2312 2313
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2314
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2315 2316
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2317 2318 2319

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2332 2333 2334 2335 2336 2337 2338

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2339 2340 2341
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2342 2343
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2344 2345 2346 2347 2348
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2349
            'dim': dim if dim != None else [0],
2350 2351 2352 2353 2354 2355
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2356
def reduce_min(input, dim=None, keep_dim=False, name=None):
2357
    """
Y
yangyaming 已提交
2358
    Computes the minimum of tensor elements over the given dimension.
2359 2360 2361

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2362
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2363 2364 2365
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2366
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2367 2368
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2369
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2370 2371
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2372 2373 2374

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2387 2388 2389 2390 2391 2392 2393

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2394 2395 2396
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2397 2398
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2399 2400 2401 2402 2403
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2404
            'dim': dim if dim != None else [0],
2405 2406 2407 2408
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2409 2410


2411 2412 2413 2414 2415 2416
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2417
        dim (list|int|None): The dimensions along which the product is performed. If
2418 2419
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2420 2421
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2422 2423 2424
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2425
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2426
            layer will be named automatically.
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2441
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2442
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2443 2444 2445 2446 2447 2448 2449

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2450 2451 2452
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2453 2454
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2455 2456 2457 2458 2459
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2460
            'dim': dim if dim != None else [0],
2461 2462 2463 2464 2465 2466
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2467
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2468
    """
C
caoying03 已提交
2469
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2470 2471 2472

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2473 2474 2475 2476 2477
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2478
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2479
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2480
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2481 2482
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2495 2496
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2535 2536
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2537 2538 2539 2540 2541

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2542 2543 2544 2545 2546 2547 2548 2549
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2561
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2562 2563
    """

F
fengjiayi 已提交
2564 2565
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2566 2567
    helper = LayerHelper("l2_normalize", **locals())

2568 2569
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
2570
    helper.append_op(
2571 2572 2573 2574
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
2575
        attrs={
2576 2577
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
2578 2579
        })
    return out
2580 2581


2582
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2583
    """
Y
ying 已提交
2584 2585 2586 2587
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2588

C
chengduoZH 已提交
2589
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2590
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2591

2592 2593 2594 2595 2596
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2597
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2598

C
chengduoZH 已提交
2599
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2600
      performs in the following way.
G
guosheng 已提交
2601

2602
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2603
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2604
        last two dimensions and a batched matrix multiply supporting broadcast
2605
        applies on the two tensors.
G
guosheng 已提交
2606

Y
ying 已提交
2607 2608
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2609
    removed after matrix multiplication.
G
guosheng 已提交
2610 2611 2612

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2613 2614 2615
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2616
        name(str|None): A name for this layer(optional). If set None, the layer
2617
            will be named automatically.
G
guosheng 已提交
2618 2619

    Returns:
2620
        Variable: The product Tensor variable.
G
guosheng 已提交
2621

G
guosheng 已提交
2622 2623 2624
    Examples:
        .. code-block:: python

2625
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2626 2627
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2628

2629 2630
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2631

2632 2633
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2634

2635 2636
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2637 2638 2639 2640

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2641 2642
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2643

Y
ying 已提交
2644
            # x: [M], y: [N]
2645
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2646
    """
Y
ying 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2659
            y_shape = y_shape + [1]
Y
ying 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2676
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2677
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2678
    helper.append_op(
2679 2680 2681 2682 2683 2684 2685
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2686 2687


2688
def topk(input, k, name=None):
Q
qingqing01 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2704 2705
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2737
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2738
                  name=None):
2739
    """
Y
ying 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2749

Y
ying 已提交
2750
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2751

Y
ying 已提交
2752 2753 2754 2755
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2756

Y
ying 已提交
2757 2758 2759
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2760

2761 2762 2763
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
Y
ying 已提交
2764 2765 2766 2767
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2768
        name (str): The name of this layer. It is optional.
2769

W
wanghaoshuang 已提交
2770
    Returns:
W
wanghaoshuang 已提交
2771
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2772 2773 2774 2775 2776

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2777 2778
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2779
            cost = fluid.layers.edit_distance(input=x,label=y)
2780
    """
2781
    helper = LayerHelper("edit_distance", **locals())
2782

2783
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2784
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2785 2786 2787 2788 2789 2790 2791
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2792
            attrs={"tokens": ignored_tokens})
2793 2794 2795 2796 2797
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2798
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2799
            attrs={"tokens": ignored_tokens})
2800 2801
        label = erased_label

2802 2803
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2804
    sequence_num = helper.create_tmp_variable(dtype="int64")
2805 2806 2807 2808
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2809 2810
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2811 2812
        attrs={"normalized": normalized})

2813
    return edit_distance_out, sequence_num
2814 2815 2816 2817 2818


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2819 2820 2821 2822
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2861
        name (str): The name of this layer. It is optional.
2862 2863

    Returns:
2864
        Variable: CTC greedy decode result. If all the sequences in result were
2865
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2866 2867 2868 2869 2870

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2871

2872
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2873
    """
2874
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2875
    _, topk_indices = topk(input, k=1)
2876 2877 2878 2879 2880 2881

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2882
        outputs={"Output": [ctc_out]},
2883 2884
        attrs={"merge_repeated": True,
               "blank": blank})
2885
    return ctc_out
2886 2887


F
fengjiayi 已提交
2888
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2889
    """
2890 2891
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2892
    to compute Connectionist Temporal Classification (CTC) loss.
2893 2894
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2895 2896 2897
    input tensor.

    Args:
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
        input(Variable): (LodTensor, default: LoDTensor<float>),
            the unscaled probabilities of variable-length sequences,
            which is a 2-D Tensor with LoD information.
            It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
            sequences' length and num_classes is the true number of classes.
            (not including the blank label).
        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
            of variable-length sequence, which is a 2-D Tensor with LoD
            information. It is of the shape [Lg, 1], where Lg is th sum of
            all labels' length.
        blank (int): default 0, the blank label index of Connectionist
            Temporal Classification (CTC) loss, which is in the
            half-opened interval [0, num_classes + 1).
        norm_by_times (bool): default false, whether to normalize
            the gradients by the number of time-step, which is also the
            sequence's length. There is no need to normalize the gradients
            if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2915 2916

    Returns:
2917 2918
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2919 2920 2921

    Examples:
        .. code-block:: python
2922 2923 2924 2925
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2926 2927 2928
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2929
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
2973 2974 2975
        input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
            with shape being [N, M] where M for dimension.
        new_dim (int): New dimension which the input LoDTensor is reshaped to.
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2995 2996


2997 2998 2999 3000
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3001 3002 3003 3004 3005 3006 3007
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
        Variable: output of nce layer.
    """
Y
Yang Yu 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3067
    return cost / (num_neg_samples + 1)
3068 3069


Y
fix ci.  
ying 已提交
3070
def transpose(x, perm, name=None):
Y
ying 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3080 3081 3082
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3083 3084 3085 3086 3087 3088 3089 3090

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3091
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3092 3093
    """

Y
fix ci.  
ying 已提交
3094
    if len(perm) != len(x.shape):
Y
ying 已提交
3095 3096 3097
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3098 3099 3100 3101 3102 3103
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3104 3105

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3106
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3107 3108
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3109
        inputs={'X': [x]},
Y
ying 已提交
3110 3111 3112
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3113 3114


3115
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3116
    """
3117 3118 3119 3120 3121 3122 3123
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3152 3153 3154
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3155 3156 3157 3158 3159
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3189 3190 3191
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3212 3213
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3214 3215

    """
W
wanghaoshuang 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3227
    helper = LayerHelper('im2sequence', **locals())
3228 3229
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3230
        type='im2sequence',
3231 3232 3233
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3234 3235 3236
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3237 3238
        })
    return out
3239 3240


3241 3242 3243 3244
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3245
    equation of row convolution is as follows:
3246 3247 3248 3249 3250 3251 3252

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3253
    * :math:`\\tau`: Future context size.
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3264 3265
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3291
    return helper.append_activation(out)
3292 3293


3294 3295 3296 3297
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3313 3314

    Args:
3315
        inputs (list): A list of variables to gather from. All variables have the
Y
yangyaming 已提交
3316
                same shape and the rank is at least 2.
3317
        index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3318
                with shape [M, 1] where M is the batch size.
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3332 3333 3334 3335 3336 3337

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3338 3339 3340 3341 3342 3343
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3344 3345 3346 3347 3348


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3349

3350 3351 3352 3353
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3354

3355 3356 3357
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3358

3359 3360 3361
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3362

3363
    The equation is as follows:
3364

3365
    1) Hard label (one-hot label, so every sample has exactly one class)
3366

3367 3368 3369 3370
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3371

3372 3373 3374
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3397 3398
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3417
    This operator computes the smooth L1 loss for X and Y.
3418
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3419
    For each instance, it computes the smooth L1 loss element by element first
3420
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3421

3422 3423
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3424
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3425
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3426
            L1 loss op with same shape as x.
3427 3428 3429 3430 3431 3432
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3433
            the out smooth L1 loss will be multiplied by this tensor element
3434
            by element.
Q
qingqing01 已提交
3435
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3436 3437
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3438
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3439 3440 3441 3442 3443 3444
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3445 3446
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3447
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3448
            out = fluid.layers.smooth_l1(x=fc, y=label)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3465 3466 3467 3468 3469 3470 3471 3472 3473


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3474
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3475 3476 3477 3478 3479 3480
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3481 3482
        .. code-block:: python

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3504 3505


Y
Yu Yang 已提交
3506
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3507
    """
Y
Yu Yang 已提交
3508
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3509
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3510 3511 3512 3513 3514 3515

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3516 3517
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3518 3519
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3520 3521
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3522 3523 3524 3525 3526
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3527
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3528 3529 3530
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3531 3532
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3533 3534 3535
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3536 3537


3538
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3539
    """
C
caoying03 已提交
3540 3541
    Gives a new shape to the input Tensor without changing its data.

3542 3543 3544 3545 3546
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3547

3548
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3549

3550 3551 3552 3553
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3554
    2. 0 means the actual dimension value is going to be copied from the
3555 3556 3557 3558
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3559 3560

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3561
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3562
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3563

3564
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3565 3566
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3567 3568
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3569
    dimensions.
C
caoying03 已提交
3570

3571
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3572 3573 3574 3575
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3576 3577

    Args:
3578
        x(variable): The input tensor.
C
caoying03 已提交
3579 3580
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3581 3582 3583 3584 3585
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3586 3587 3588 3589
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
3590
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
3591

3592 3593
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
3594 3595 3596

    Examples:
        .. code-block:: python
G
guosheng 已提交
3597

3598
            data = fluid.layers.data(
3599
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3600
            reshaped = fluid.layers.reshape(
3601
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3602 3603 3604 3605 3606
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3622 3623 3624 3625
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3626 3627 3628
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3629 3630 3631 3632 3633
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3634 3635


Y
yangyaming 已提交
3636
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
3771 3772
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3800 3801 3802 3803


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3804
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3805
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3806

G
guosheng 已提交
3807 3808 3809 3810
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3833
                         The length of :attr:paddings must be
G
guosheng 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3844

G
guosheng 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3859 3860 3861 3862 3863 3864 3865 3866 3867


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3868 3869
    called label-smoothing regularization (LSR).

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3893
                              be :math:`(1, class\_num)`.
3894 3895
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3896
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3924 3925 3926 3927


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
3928
    Region of interest pooling (also known as RoI pooling) is to perform
3929 3930
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
3931 3932 3933 3934
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
3935 3936 3937 3938 3939 3940 3941
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
3942 3943
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
3944 3945 3946 3947 3948 3949 3950 3951
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
3952
        pool_out (Variable): The output is a 4-D tensor of the shape
3953 3954 3955
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
3956 3957
        .. code-block:: python

3958
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4004 4005
        .. code-block:: python

W
whs 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4017 4018


4019 4020 4021 4022 4023
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4024
    """
4025
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4026

4027 4028
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).
F
stash  
fengjiayi 已提交
4029

4030 4031
    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4032

4033
    Args:
4034
        input (Variable): The input tensor of image resize layer,
4035 4036
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4037
        out_shape(list|tuple|Variable|None): Output shape of image resize
4038 4039
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4040
        scale(float|None): The multiplier for the input height or width.
4041 4042 4043
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4044 4045
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4046 4047
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4048 4049 4050 4051

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4052

4053 4054 4055
    Examples:
        .. code-block:: python

4056
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4057
    """
4058 4059 4060 4061
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4062 4063
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4064 4065
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4066 4067 4068 4069

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4070 4071 4072
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4073
    if out_shape is not None:
B
baiyf 已提交
4074 4075 4076
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4077 4078 4079 4080 4081 4082
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4083 4084 4085 4086
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4087 4088
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4089
        type=resample_methods[resample],
4090
        inputs=inputs,
4091 4092 4093 4094
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4095 4096


Y
yuyang18 已提交
4097
@templatedoc(op_type="bilinear_interp")
4098 4099
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4100 4101 4102 4103 4104 4105
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4106

Y
yuyang18 已提交
4107 4108 4109 4110 4111 4112 4113 4114
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4132
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4133

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4147 4148 4149
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4150 4151 4152
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4153 4154 4155 4156 4157 4158 4159
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4160
        Out = X[Index]
W
whs 已提交
4161 4162 4163 4164 4165 4166 4167


    .. code-block:: text


                Given:

4168 4169
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4187

W
whs 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4222 4223 4224
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4225 4226 4227
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4228
    if isinstance(seed, int):
F
fengjiayi 已提交
4229
        seed_value = seed
F
fengjiayi 已提交
4230 4231 4232 4233 4234 4235 4236 4237
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4238 4239
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4240
            })
F
stash  
fengjiayi 已提交
4241 4242
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4243
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4244 4245
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4246
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4247 4248 4249 4250 4251
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
W
wanghaoshuang 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307


def log(x):
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

        Out = \\ln(x)

    Args:
        x (Variable): Input tensor. 

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

            output = fluid.layers.log(x)
    """
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="log", inputs={"X": input}, outputs={"Out": out})
    return out


def relu(x):
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
    where the rectified linear function, y = max(0, x), is applied to
    the tensor elementwise.

    .. math::

        Out = \\max(0, x)

    Args:
        x (Variable): The input tensor. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.relu(x)
    """
    helper = LayerHelper('relu', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="relu", inputs={"X": input}, outputs={"Out": out})
    return out
4308 4309


W
whs 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
        
        IOU = true_positive / (true_positive + false_positive + false_negative). 

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
        label (Variable):  A Tensor of ground truth labels with type int32 or int64. 
                           Its shape should be the same as input.

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 

    Examples:

        .. code-block:: python
4338
            
W
whs 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct