Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7eb19abc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7eb19abc
编写于
1月 25, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc.
上级
a249c0ca
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
15 addition
and
15 deletion
+15
-15
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+15
-15
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
7eb19abc
...
...
@@ -2714,21 +2714,21 @@ def multiplex(inputs, index):
"""
**Multiplex Layer**
Referring to the given index variable, this layer
gathers from the input
variables to output a multiplex variable. Assuming that there are :math:`m`
input variables and let :math:`I_i` represents the i-th input variable and i
is in [0, :math:`m`). All input variables are tensors with same shap
e
[:math:`d_0`, :math:`d_1`, ..., :math:`d_R`]. Please note that rank of the
input tensor should be at least 2. Each input variable will be treated as a
2-D matrix with shape [:math:`M`, :math:`N`] where :math:`M` for :math:`d_0`
and :math:`N` for :math:`d_1` * :math:`d_2` * ... * :math:`d_R`. Let
:math:`I_i[j]` be the j-th row of the i-th input variable. The given index
variable
should be a 2-D tensor with shape [:math:`M`, 1]. Let `ID[i]` b
e
the i-th index value of the index variable. Then the output variable will
be a tensor with shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`]. If we
treat the output tensor as a 2-D matrix with shape [:math:`M`, :math:`N`]
and let :math:`O[i]` be the i-th row of the matrix, then `O[i]` is equal to
:math:`I_{ID[i]}[i]`.
Referring to the given index variable, this layer
selects rows from the
input variables to construct a multiplex variable. Assuming that there are
:math:`m` input variables and :math:`I_i` represents the i-th input
variable and :math:`i` is in [0, :math:`m`). All input variables ar
e
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
variable
. The given index variable should be a 2-D tensor with shap
e
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [:math:`d_0`,
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
row of the matrix, then `O[i]` is equal to
:math:`I_{ID[i]}[i]`.
Args:
inputs (list): A list of variables to gather from. All variables have the
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录