conv_op.cc 37.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
26 27 28 29 30

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif

31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
34
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
35 36 37 38

namespace paddle {
namespace operators {

39 40
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
41 42
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
43 44 45

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
46

C
chengduoZH 已提交
47 48
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
49 50
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
51
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
52
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
53
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
54 55 56 57 58

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
59

60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
62
      platform::errors::InvalidArgument(
63 64
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
65
          in_dims.size(), in_dims));
66

C
chengduoZH 已提交
67 68
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
69
      platform::errors::InvalidArgument(
70 71 72 73
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
74
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
75

76 77 78 79 80 81 82 83 84 85 86
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
87 88 89
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
90 91 92 93 94 95 96
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
97 98 99

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
100

101 102
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
103
      platform::errors::InvalidArgument(
104 105 106 107 108
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
109 110
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
111
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
112
      filter_dims[0] % groups, 0,
113
      platform::errors::InvalidArgument(
114 115 116 117
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
118
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
119

L
liym27 已提交
120 121 122 123 124 125
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
126

127 128
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
129

L
liym27 已提交
130 131 132 133 134 135 136 137
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
138
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
139
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
140
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
141 142
      output_shape.push_back(-1);
    } else {
143 144 145
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
146
    }
C
chengduoZH 已提交
147
  }
L
liym27 已提交
148 149 150 151
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

152
  return output_shape;
C
chengduoZH 已提交
153 154
}

155 156
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
157 158
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
159
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
160
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
161
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
162 163
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
164 165
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

166
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
167
  if (platform::CanCUDNNBeUsed(ctx)) {
168
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
169 170
  }
#endif
171
#ifdef PADDLE_WITH_MKLDNN
172 173
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
174
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
175
    layout = framework::DataLayout::kMKLDNN;
176
    customized_type_value =
177 178
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
179 180
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
181
  }
182
#endif
183

184
  if (input_data_type != framework::proto::VarType::INT8 &&
185 186
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
187
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
188 189 190 191 192 193 194 195
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
196
  }
197
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
198
  if (input_data_type == framework::proto::VarType::FP16) {
199 200 201 202
    PADDLE_ENFORCE_EQ(
        library, framework::LibraryType::kCUDNN,
        platform::errors::InvalidArgument(
            "float16 can only be used when CUDNN or NPU is used"));
K
Kexin Zhao 已提交
203
  }
204
#endif
W
wuhuanzhou 已提交
205 206 207 208 209 210 211 212 213
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
        platform::CudnnVersion(), 8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
214

215 216 217
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231 232
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
233
    // Some models may have intentionally set "AnyLayout" for conv
234 235
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
236 237
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
238 239 240 241 242 243 244
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
245
void Conv2DOpMaker::Make() {
246 247 248 249
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
250 251 252 253 254 255
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
256
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
257
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
258 259
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
260 261
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
262
           "input image channels divided by the groups.");
263 264 265 266 267
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
268 269 270
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
271
           "Used with fuse_residual_connection fusion.")
272
      .AsDispensable();
Y
Yihua Xu 已提交
273 274
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
275
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
276 277 278 279
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
280
      .SetDefault({1, 1});
C
chengduoZH 已提交
281 282
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
283 284
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
285
                            "convolution operator.")
C
chengduoZH 已提交
286
      .SetDefault({0, 0});
L
liym27 已提交
287 288 289 290 291 292
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
293 294
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
295
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
296 297 298 299
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
300
      .SetDefault(1);
C
chengduoZH 已提交
301
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
302 303
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
304
                            "convolution operator.")
C
chengduoZH 已提交
305
      .SetDefault({1, 1});
306 307 308 309
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
310 311 312
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
313 314 315
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
316 317 318 319
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
320
      .SetDefault(false);
321 322 323 324 325
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
M
Michal Gallus 已提交
326 327
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
328 329 330 331 332 333
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
334 335 336 337 338 339 340 341
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
342 343 344 345 346
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
347
  AddAttr<bool>("fuse_residual_connection",
348
                "(bool, default false) Only used in mkldnn kernel. Used "
349 350
                "whenever convolution output is as an input to residual "
                "connection.")
351
      .SetDefault(false);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
372 373 374 375 376 377
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
378
      .SetDefault("NCHW");
379 380 381 382 383 384 385 386
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
387
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
388 389
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
390
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
391
                "for cuDNN convolution or not, default is False.")
392
      .SetDefault(false);
L
liym27 已提交
393

C
chengduoZH 已提交
394
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
395 396
Convolution Operator.

C
chengduoZH 已提交
397
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
398
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
399
parameters is checked in the infer-shape.
L
liym27 已提交
400
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
401
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
402
the width of the feature.
403
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
404 405 406 407
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
408 409 410 411
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
412 413
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
414
  Output:
C
chengduoZH 已提交
415 416 417
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
418 419
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
420
$$
C
chengduoZH 已提交
421
)DOC");
Q
qingqing01 已提交
422
  Apply();
C
chengduoZH 已提交
423 424
}

Y
Yu Yang 已提交
425
void Conv3DOpMaker::Make() {
426 427 428 429
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
430 431
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
432
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
433 434
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
435 436 437
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
438
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
439
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
440 441
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
442 443 444
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
445
           "input image channels divided by the groups.");
446 447 448 449 450
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
451 452
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
453
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
454 455 456 457
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
458
      .SetDefault({1, 1, 1});
L
liym27 已提交
459 460 461 462 463 464
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
465
      .SetDefault({0, 0, 0});
L
liym27 已提交
466 467 468 469 470 471
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
472 473
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
474
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
475 476 477 478
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
479
      .SetDefault(1);
C
chengduoZH 已提交
480
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
481 482
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
483
                            "convolution operator.")
C
chengduoZH 已提交
484
      .SetDefault({1, 1, 1});
485 486 487 488
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
489 490 491
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
492 493 494 495 496
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
497 498
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
499 500 501 502 503 504 505 506
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
507 508 509 510 511
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
      .SetDefault(false);
512 513 514 515 516
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
517 518
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
519 520 521
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
522
      "the input will be transformed automatically. ")
L
liym27 已提交
523
      .SetDefault("NCDHW");
524 525 526
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
527 528 529 530 531 532 533
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
534
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
535 536
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
537
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
538
                "for cuDNN convolution or not, default is False.")
539
      .SetDefault(false);
C
chengduoZH 已提交
540
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
541 542
Convolution3D Operator.

C
chengduoZH 已提交
543
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
544
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
545
parameters is checked in the infer-shape.
L
liym27 已提交
546
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
547
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
548 549 550 551 552 553
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
554 555 556 557
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
558 559
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
560
  Output:
C
chengduoZH 已提交
561 562 563
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
564 565 566
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
567
  $$
C
chengduoZH 已提交
568
)DOC");
Q
qingqing01 已提交
569
  Apply();
C
chengduoZH 已提交
570 571
}

C
chengduoZH 已提交
572 573 574 575 576 577 578 579 580 581 582
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

583 584
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
585 586
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
587
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
588
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
589
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
590
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
591
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
592

593
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
594 595
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
596 597
  }
#endif
598 599
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
600
      this->CanMKLDNNBeUsed(ctx, data_type)) {
601
    const std::string data_format = ctx.Attr<std::string>("data_format");
602
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
603
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
604
    customized_type_value = kConvMKLDNNFP32;
605
  }
606
#endif
607

608 609
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
610
  return type;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
639 640
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
641
 public:
H
hong 已提交
642
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
643

644
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
645
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
646 647 648 649
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
650

H
hong 已提交
651 652 653 654
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
655
  }
S
sneaxiy 已提交
656 657
};

H
hong 已提交
658 659
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
660
 public:
H
hong 已提交
661
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
662

663
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
664
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
665 666 667
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
668

H
hong 已提交
669 670
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
671

H
hong 已提交
672 673
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
674 675
    }

H
hong 已提交
676
    op->SetAttrMap(this->Attrs());
677 678 679
  }
};

Q
qingqing01 已提交
680 681 682 683
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
684 685
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
686
 public:
H
hong 已提交
687
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
688

689
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
690 691
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
692 693 694 695 696 697
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
698 699 700 701

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
702 703
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
704

L
lvmengsi 已提交
705
    op->SetOutput("DDOutput",
H
hong 已提交
706
                  ddx.empty()
707
                      ? this->EmptyInputGrad()
H
hong 已提交
708
                      : this->InputGrad(framework::GradVarName("Output")));
709 710 711 712
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
713

H
hong 已提交
714
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
715 716 717
  }
};

L
lvmengsi 已提交
718 719 720 721
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
722 723
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
724
 public:
H
hong 已提交
725
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
726

727
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
728 729
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
730 731 732 733 734 735
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
736

H
hong 已提交
737 738
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
739

L
lvmengsi 已提交
740
    op->SetOutput("DDOutput",
H
hong 已提交
741
                  ddx.empty()
742
                      ? this->EmptyInputGrad()
H
hong 已提交
743
                      : this->InputGrad(framework::GradVarName("Output")));
744 745 746 747
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
748

H
hong 已提交
749
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
750 751 752
  }
};

Q
qingqing01 已提交
753 754 755 756 757
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
758 759
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
760 761
    ctx->SetOutputDim("DDOutput", do_dims);
  }
762
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
763 764
    ctx->SetOutputDim("DFilter", w_dims);
  }
765
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
766 767 768 769 770 771 772 773 774
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
775
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
776 777
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

778
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
779 780
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
781
  }
Q
qingqing01 已提交
782
#endif
783 784 785
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
786 787 788
  return type;
}

C
chengduoZH 已提交
789 790 791 792
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
793
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
794 795 796 797 798 799
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
800
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
801 802

// depthwise convolution op
Y
Yang Yang 已提交
803
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
804 805 806
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
807 808 809 810
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
811

Y
Yang Yang 已提交
812
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
813 814 815 816 817 818
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
819
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
820

821 822
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
823
REGISTER_OP_CPU_KERNEL(
824
    depthwise_conv2d,
X
xzl 已提交
825 826 827 828
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
829
    depthwise_conv2d_grad,
X
xzl 已提交
830 831
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
832

C
chengduoZH 已提交
833
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
834 835 836 837 838 839
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
840 841 842 843
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
844 845

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
846 847 848 849 850 851
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
852 853 854 855
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));