conv_op.cc 26.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
35
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
37
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
39
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45 46
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
50 51 52
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
53 54 55 56 57 58 59 60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
62

Y
Yang Yu 已提交
63
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
64
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
65
                    "channels * groups.");
C
chengduoZH 已提交
66
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
67
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
68 69 70
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
71
  for (size_t i = 0; i < strides.size(); ++i) {
T
tink2123 已提交
72
    if ((!ctx->IsRuntime()) &&
T
tink2123 已提交
73
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
74 75 76 77 78 79
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                            dilations[i], paddings[i],
                                            strides[i]));
    }
C
chengduoZH 已提交
80
  }
81
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
82
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
83 84
}

85 86
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
87 88
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
89
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
90
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
91
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
92
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
93 94
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
95
#ifdef PADDLE_WITH_CUDA
96
  if (platform::CanCUDNNBeUsed(ctx)) {
97
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
98 99
  }
#endif
100
#ifdef PADDLE_WITH_MKLDNN
101
  if (library == framework::LibraryType::kPlain &&
102
      platform::CanMKLDNNBeUsed(ctx)) {
103
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
    layout = framework::DataLayout::kMKLDNN;
105 106 107 108 109
    customized_type_value =
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType)
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
110
  }
111
#endif
112

113 114 115 116 117 118
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
119
  if (input_data_type == framework::proto::VarType::FP16) {
120
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
121 122 123
                      "float16 can only be used when CUDNN is used");
  }

124 125 126 127 128 129 130 131 132 133 134 135 136 137
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
138 139
}

Y
Yu Yang 已提交
140
void Conv2DOpMaker::Make() {
141 142 143 144
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
145 146
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
147 148 149 150
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
151
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
152
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
153 154
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
155 156
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
157
           "input image channels divided by the groups.");
158 159 160 161 162
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
163 164 165
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
166
           "Used with fuse_residual_connection fusion.")
167
      .AsDispensable();
Y
Yihua Xu 已提交
168 169 170
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
171 172 173 174
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
175
      .SetDefault({1, 1});
C
chengduoZH 已提交
176 177 178 179
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
180 181 182
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
183
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
184 185 186 187
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
188
      .SetDefault(1);
C
chengduoZH 已提交
189
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
190 191
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
192
                            "convolution operator.")
C
chengduoZH 已提交
193
      .SetDefault({1, 1});
194 195 196 197
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
198 199 200
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
201 202 203
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
204 205 206 207 208 209
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
210 211
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
212
  AddAttr<bool>("fuse_residual_connection",
213
                "(bool, default false) Only used in mkldnn kernel. Used "
214 215
                "whenever convolution output is as an input to residual "
                "connection.")
216
      .SetDefault(false);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
252
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
253 254
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
255
                "convolution, whether enable exhaustive search "
256 257
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
258
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
259 260
Convolution Operator.

C
chengduoZH 已提交
261
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
262
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
263
parameters is checked in the infer-shape.
C
chengduoZH 已提交
264
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
265
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
266 267 268 269 270 271
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
272 273 274 275
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
276 277
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
278
  Output:
C
chengduoZH 已提交
279 280 281 282 283 284
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
285
)DOC");
Q
qingqing01 已提交
286
  Apply();
C
chengduoZH 已提交
287 288
}

Y
Yu Yang 已提交
289
void Conv3DOpMaker::Make() {
290 291 292 293
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
294 295
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
296
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
297
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
298 299 300
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
301
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
302
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
303 304
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
305 306 307
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
308
           "input image channels divided by the groups.");
309 310 311 312 313
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
314 315 316
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
317 318 319 320
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
321
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
322 323 324 325
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
326 327 328
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
329
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
330 331 332 333
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
334
      .SetDefault(1);
C
chengduoZH 已提交
335
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
336 337
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
338
                            "convolution operator.")
C
chengduoZH 已提交
339
      .SetDefault({1, 1, 1});
340 341 342 343
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
344 345 346
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
347 348 349 350 351 352 353
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
354 355 356 357 358 359 360
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
361 362 363
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
364 365 366 367 368 369 370
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
371
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
372 373
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
374
                "convolution, whether enable exhaustive search "
375 376
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
377
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
378 379
Convolution3D Operator.

C
chengduoZH 已提交
380
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
381
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
382
parameters is checked in the infer-shape.
C
chengduoZH 已提交
383
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
384
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
385 386 387 388 389 390
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
391 392 393 394
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
395 396
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
397
  Output:
C
chengduoZH 已提交
398 399 400 401 402 403 404
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
405
)DOC");
Q
qingqing01 已提交
406
  Apply();
C
chengduoZH 已提交
407 408
}

C
chengduoZH 已提交
409 410 411 412 413 414 415 416 417 418 419
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

420 421
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
422 423
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
424
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
425 426 427 428
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
429
#ifdef PADDLE_WITH_CUDA
430 431
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
432 433
  }
#endif
434 435 436 437
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
438
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
439
    customized_type_value = kConvMKLDNNFP32;
440
  }
441
#endif
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
462 463
}

S
sneaxiy 已提交
464
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
465 466 467 468 469
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
470
    op->SetType(this->ForwardOpType() + "_grad");
471 472 473 474 475 476 477 478 479 480 481 482
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
483 484 485 486 487
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
488

S
sneaxiy 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
506 507 508
  }
};

Q
qingqing01 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
    op->SetOutput("DDOutput", InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter", InputGrad("Filter"));
    op->SetOutput("DInput", InputGrad("Input"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

  if (ctx->HasOutput("DDOutput")) {
    ctx->SetOutputDim("DDOutput", do_dims);
  }
  if (ctx->HasOutput("DFilter")) {
    ctx->SetOutputDim("DFilter", w_dims);
  }
  if (ctx->HasOutput("DInput")) {
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    PADDLE_THROW("Now ConvDoubleGrad only supports cuDNN.");
  }
#endif
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
595 596 597 598
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
599
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
600
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
601 602
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
603 604

// depthwise convolution op
Y
Yang Yang 已提交
605
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
606
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
607
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
608

Y
Yang Yang 已提交
609
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
610
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
611
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
612

613 614
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
615
REGISTER_OP_CPU_KERNEL(
616
    depthwise_conv2d,
X
xzl 已提交
617 618 619 620
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
621
    depthwise_conv2d_grad,
X
xzl 已提交
622 623
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
624

C
chengduoZH 已提交
625
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
626 627 628 629 630 631
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
632 633

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
634 635 636 637 638 639
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);