conv_op.cc 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
22 23 24 25

namespace paddle {
namespace operators {

C
chengduoZH 已提交
26
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
28
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
30
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
32
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
33 34 35 36 37 38

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
39
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
43 44 45 46 47 48 49 50 51
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
52

Y
Yang Yu 已提交
53
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
54
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
55
                    "channels * groups.");
F
fengjiayi 已提交
56

C
chengduoZH 已提交
57
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
58
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
59 60 61
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
62
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
63 64 65
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
66
  }
67
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
68
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
69 70
}

71 72
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
73
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
74
#ifdef PADDLE_WITH_CUDA
75 76
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
77 78
  }
#endif
79 80 81 82
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
83
  }
84
#endif
85 86

  std::string data_format = ctx.Attr<std::string>("data_format");
87
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
88 89 90 91 92 93
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

94
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
95 96 97
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
98 99 100 101
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
102
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
103
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
104 105
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
106 107
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
108 109
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
110 111
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
112 113 114 115
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
116
      .SetDefault({1, 1});
C
chengduoZH 已提交
117 118 119 120
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
121 122 123
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
124
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
125 126 127 128
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
129
      .SetDefault(1);
C
chengduoZH 已提交
130
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
131 132
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
133
                            "convolution operator.")
C
chengduoZH 已提交
134
      .SetDefault({1, 1});
135 136 137 138
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
139 140 141
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
chengduoZH 已提交
158
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
159 160
Convolution Operator.

C
chengduoZH 已提交
161
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
162
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
163
parameters is checked in the infer-shape.
C
chengduoZH 已提交
164
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
165
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
166 167 168 169 170 171
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
172 173 174 175
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
176 177
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
178
  Output:
C
chengduoZH 已提交
179 180 181 182 183 184
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
185
)DOC");
C
chengduoZH 已提交
186 187
}

188
Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
189 190 191
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
192
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
193
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
194 195 196
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
197
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
198
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
199 200
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
201 202 203
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
204 205
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
206
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
207
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
208 209 210 211
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
212
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
213 214 215 216
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
217 218 219
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
220
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
221 222 223 224
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
225
      .SetDefault(1);
C
chengduoZH 已提交
226
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
227 228
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
229
                            "convolution operator.")
C
chengduoZH 已提交
230
      .SetDefault({1, 1, 1});
231 232 233 234
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
235 236 237
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
fix doc  
chengduoZH 已提交
253

C
chengduoZH 已提交
254
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
255 256
Convolution3D Operator.

C
chengduoZH 已提交
257
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
258
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
259
parameters is checked in the infer-shape.
C
chengduoZH 已提交
260
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
261
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
262 263 264 265 266 267
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
268 269 270 271
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
272 273
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
274
  Output:
C
chengduoZH 已提交
275 276 277 278 279 280 281
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
282 283 284
)DOC");
}

C
chengduoZH 已提交
285 286 287 288 289 290 291 292 293 294 295
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

296 297
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
298
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
299
#ifdef PADDLE_WITH_CUDA
300 301
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
302 303
  }
#endif
304 305 306 307
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
308
  }
309
#endif
310 311

  std::string data_format = ctx.Attr<std::string>("data_format");
312
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
313 314 315 316 317 318
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
319 320 321 322
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
323 324
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
325 326

// depthwise convolution op
327 328
REGISTER_OP(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
            depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
329 330 331
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

332 333
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
334
REGISTER_OP_CPU_KERNEL(
335
    depthwise_conv2d,
X
xzl 已提交
336 337 338 339
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
340
    depthwise_conv2d_grad,
X
xzl 已提交
341 342
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
343

C
chengduoZH 已提交
344
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
345 346 347 348 349 350
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
351 352

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
353 354 355 356 357 358
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);