conv_op.cc 34.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50 51
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
52

53 54 55 56 57
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
      "ShapeError: the input of Op(conv) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor, the shape of input is [%s].",
      in_dims.size(), in_dims);
58

C
chengduoZH 已提交
59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
61 62 63 64
      "ShapeError: the input's dimension size and filter's dimension size of "
      "Op(conv) should be equal. But received: the shape of input is [%s], "
      "the dimension size of input is [%d], the shape of filter is [%s],  "
      "the dimension size of filter is [%d].",
65 66 67 68
      in_dims, in_dims.size(), filter_dims, filter_dims.size());

  int in_sub_stride_size = in_dims.size() - strides.size();
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
69 70 71 72 73 74
                    "ShapeError: the dimension size of input minus the size of "
                    "Attr(stride) must be euqal to 2 for Op(conv)."
                    "But received: the dimension size of input minus the size "
                    "of Attr(stride) is [%d], the "
                    "input's dimension size is [%d], the shape of input "
                    "is [%s], the Attr(stride)'s size is [%d].",
75 76
                    in_sub_stride_size, in_dims.size(), in_dims,
                    strides.size());
L
liym27 已提交
77 78 79

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
80

81 82 83
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
      "ShapeError: The number of input channels should be equal to filter "
84 85 86 87 88 89 90
      "channels * groups for Op(conv). But received: the input's channels is "
      "[%d], the shape "
      "of input is [%s], the filter's channel is [%d], the shape of filter is "
      "[%s], the groups is [%d], the data_format is %s. The error may come "
      "from wrong data_format setting.",
      input_channels, in_dims, filter_dims[1], filter_dims, groups,
      data_format);
C
chengduoZH 已提交
91
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
92
      filter_dims[0] % groups, 0,
93 94 95 96
      "ShapeError: The number of output channels of Op(conv) should be divided "
      "by groups. "
      "But received: the output channels is [%d], the shape of filter is [%s] "
      "(the first dimension of filter is output channel), the groups is [%d].",
97
      filter_dims[0], filter_dims, groups);
C
chengduoZH 已提交
98

L
liym27 已提交
99
  framework::DDim in_data_dims;
100
  framework::DDim filter_data_dims;
L
liym27 已提交
101 102 103 104 105
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
106 107 108

  filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size());

L
liym27 已提交
109 110 111 112 113 114 115 116 117
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (size_t i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
118
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
119
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
120 121
      output_shape.push_back(-1);
    } else {
122 123 124
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
125
    }
C
chengduoZH 已提交
126
  }
L
liym27 已提交
127 128 129 130
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

131
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
132
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
133 134
}

135 136
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
137 138
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
139
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
140
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
141
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
142 143
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
144 145
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
146
#ifdef PADDLE_WITH_CUDA
147
  if (platform::CanCUDNNBeUsed(ctx)) {
148
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
149 150
  }
#endif
151
#ifdef PADDLE_WITH_MKLDNN
152
  if (library == framework::LibraryType::kPlain &&
153
      platform::CanMKLDNNBeUsed(ctx)) {
154 155 156 157 158 159 160 161 162
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(data_format, "NHWC",
                      platform::errors::Unimplemented(
                          "Conv MKLDNN does not support NHWC data format yet"));
    PADDLE_ENFORCE_NE(
        data_format, "NDHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN does not support NDHWC data format yet"));
163
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
164
    layout = framework::DataLayout::kMKLDNN;
165
    customized_type_value =
166 167
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
168 169
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
170
  }
171
#endif
172

173 174 175 176 177 178
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
179
  if (input_data_type == framework::proto::VarType::FP16) {
180
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
181 182 183
                      "float16 can only be used when CUDNN is used");
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
198 199
}

Y
Yu Yang 已提交
200
void Conv2DOpMaker::Make() {
201 202 203 204
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
205 206 207 208 209 210
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
211
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
212
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
213 214
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
215 216
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
217
           "input image channels divided by the groups.");
218 219 220 221 222
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
223 224 225
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
226
           "Used with fuse_residual_connection fusion.")
227
      .AsDispensable();
Y
Yihua Xu 已提交
228 229
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
230
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
231 232 233 234
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
235
      .SetDefault({1, 1});
C
chengduoZH 已提交
236 237
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
238 239
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
240
                            "convolution operator.")
C
chengduoZH 已提交
241
      .SetDefault({0, 0});
L
liym27 已提交
242 243 244 245 246 247
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
248 249
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
250
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
251 252 253 254
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
255
      .SetDefault(1);
C
chengduoZH 已提交
256
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
257 258
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
259
                            "convolution operator.")
C
chengduoZH 已提交
260
      .SetDefault({1, 1});
261 262 263 264
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
265 266 267
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
268 269 270
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
271 272 273 274 275 276
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
277 278
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
279 280 281 282 283 284
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
285 286 287 288 289 290 291 292
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
293
  AddAttr<bool>("fuse_residual_connection",
294
                "(bool, default false) Only used in mkldnn kernel. Used "
295 296
                "whenever convolution output is as an input to residual "
                "connection.")
297
      .SetDefault(false);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
318 319 320 321 322 323
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
324
      .SetDefault("NCHW");
325 326 327 328 329 330 331 332
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
333
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
334 335
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
336
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
337
                "for cuDNN convolution or not, default is False.")
338
      .SetDefault(false);
L
liym27 已提交
339

C
chengduoZH 已提交
340
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
341 342
Convolution Operator.

C
chengduoZH 已提交
343
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
344
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
345
parameters is checked in the infer-shape.
L
liym27 已提交
346
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
347
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
348
the width of the feature.
349
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
350 351 352 353
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
354 355 356 357
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
358 359
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
360
  Output:
C
chengduoZH 已提交
361 362 363
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
364 365
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
366
$$
C
chengduoZH 已提交
367
)DOC");
Q
qingqing01 已提交
368
  Apply();
C
chengduoZH 已提交
369 370
}

Y
Yu Yang 已提交
371
void Conv3DOpMaker::Make() {
372 373 374 375
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
376 377
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
378
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
379 380
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
381 382 383
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
384
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
385
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
386 387
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
388 389 390
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
391
           "input image channels divided by the groups.");
392 393 394 395 396
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
397 398
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
399
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
400 401 402 403
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
404
      .SetDefault({1, 1, 1});
L
liym27 已提交
405 406 407 408 409 410
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
411
      .SetDefault({0, 0, 0});
L
liym27 已提交
412 413 414 415 416 417
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
418 419
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
420
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
421 422 423 424
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
425
      .SetDefault(1);
C
chengduoZH 已提交
426
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
427 428
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
429
                            "convolution operator.")
C
chengduoZH 已提交
430
      .SetDefault({1, 1, 1});
431 432 433 434
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
435 436 437
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
438 439
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
440 441 442 443 444 445 446 447
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
448 449 450 451 452
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
453 454
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
455 456 457
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
458
      "the input will be transformed automatically. ")
L
liym27 已提交
459
      .SetDefault("NCDHW");
460 461 462
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
463 464 465 466 467 468 469
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
470
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
471 472
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
473
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
474
                "for cuDNN convolution or not, default is False.")
475
      .SetDefault(false);
C
chengduoZH 已提交
476
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
477 478
Convolution3D Operator.

C
chengduoZH 已提交
479
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
480
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
481
parameters is checked in the infer-shape.
L
liym27 已提交
482
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
483
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
484 485 486 487 488 489
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
490 491 492 493
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
494 495
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
496
  Output:
C
chengduoZH 已提交
497 498 499
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
500 501 502
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
503
  $$
C
chengduoZH 已提交
504
)DOC");
Q
qingqing01 已提交
505
  Apply();
C
chengduoZH 已提交
506 507
}

C
chengduoZH 已提交
508 509 510 511 512 513 514 515 516 517 518
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

519 520
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
521 522
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
523
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
524
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
525
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
526 527
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
528
#ifdef PADDLE_WITH_CUDA
529 530
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
531 532
  }
#endif
533 534 535
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
536 537 538 539 540 541 542 543 544 545
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN grad does not support NHWC data format yet"));
    PADDLE_ENFORCE_NE(
        data_format, "NDHWC",
        platform::errors::Unimplemented(
            "Conv MKLDNN Grad does not support NDHWC data format yet"));
546
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
547
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
548
    customized_type_value = kConvMKLDNNFP32;
549
  }
550
#endif
551

552 553 554
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
571 572
}

H
hong 已提交
573 574
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
575
 public:
H
hong 已提交
576
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
577

H
hong 已提交
578 579
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
580
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
581 582 583 584
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
585

H
hong 已提交
586 587 588 589
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
590

H
hong 已提交
591
    return std::unique_ptr<T>(op);
592
  }
S
sneaxiy 已提交
593 594
};

H
hong 已提交
595 596
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
597
 public:
H
hong 已提交
598
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
599

H
hong 已提交
600 601
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
602
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
603 604 605
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
606

H
hong 已提交
607 608
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
609

H
hong 已提交
610 611
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
612 613
    }

H
hong 已提交
614
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
615

H
hong 已提交
616
    return std::unique_ptr<T>(op);
617 618 619
  }
};

Q
qingqing01 已提交
620 621 622 623
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
624 625
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
626
 public:
H
hong 已提交
627
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
628

H
hong 已提交
629 630
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
Q
qingqing01 已提交
631 632
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
633 634 635 636 637 638
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
639 640 641 642

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
643 644
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
645

L
lvmengsi 已提交
646
    op->SetOutput("DDOutput",
H
hong 已提交
647 648 649 650 651 652 653
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
654

H
hong 已提交
655
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
656

H
hong 已提交
657
    return std::unique_ptr<T>(op);
Q
qingqing01 已提交
658 659 660
  }
};

L
lvmengsi 已提交
661 662 663 664
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
665 666
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
667
 public:
H
hong 已提交
668
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
669

H
hong 已提交
670 671
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
L
lvmengsi 已提交
672 673
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
674 675 676 677 678 679
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
680

H
hong 已提交
681 682
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
683

L
lvmengsi 已提交
684
    op->SetOutput("DDOutput",
H
hong 已提交
685 686 687 688 689 690 691
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
L
lvmengsi 已提交
692

H
hong 已提交
693
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
694

H
hong 已提交
695
    return std::unique_ptr<T>(op);
L
lvmengsi 已提交
696 697 698
  }
};

Q
qingqing01 已提交
699 700 701 702 703
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
704 705
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
706 707
    ctx->SetOutputDim("DDOutput", do_dims);
  }
708
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
709 710
    ctx->SetOutputDim("DFilter", w_dims);
  }
711
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
712 713 714 715 716 717 718 719 720
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
721
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
722 723 724 725 726
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
727
  }
Q
qingqing01 已提交
728
#endif
729 730 731
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
754 755 756 757
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
758
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
759 760 761 762 763 764
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
765
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
766 767

// depthwise convolution op
Y
Yang Yang 已提交
768
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
769 770 771
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
772
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
773

Y
Yang Yang 已提交
774
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
775 776 777 778 779 780
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
781
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
782

783 784
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
785
REGISTER_OP_CPU_KERNEL(
786
    depthwise_conv2d,
X
xzl 已提交
787 788 789 790
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
791
    depthwise_conv2d_grad,
X
xzl 已提交
792 793
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
794

C
chengduoZH 已提交
795
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
796 797 798 799 800 801
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
802 803 804 805
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
806 807

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
808 809 810 811 812 813
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
814 815 816 817
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);