conv_op.cc 16.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
57

Y
Yang Yu 已提交
58
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
59
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
60
                    "channels * groups.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
62
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
63 64 65
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
67 68 69
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
70
  }
71
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
72
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
73 74
}

75 76
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
77
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
78
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
79
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
80 81
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
82
#ifdef PADDLE_WITH_CUDA
83
  if (platform::CanCUDNNBeUsed(ctx)) {
84
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
85 86
  }
#endif
87
#ifdef PADDLE_WITH_MKLDNN
88
  if (library == framework::LibraryType::kPlain &&
89
      platform::CanMKLDNNBeUsed(ctx)) {
90
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
91
    layout = framework::DataLayout::kMKLDNN;
92
  }
93
#endif
94

K
Kexin Zhao 已提交
95 96 97 98 99 100 101 102
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
  auto filter_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
103
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
104 105 106
                      "float16 can only be used when CUDNN is used");
  }

107 108
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DOpMaker::Make() {
C
chengduoZH 已提交
112 113
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
114 115 116 117
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
118
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
119
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
120 121
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
122 123
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
124
           "input image channels divided by the groups.");
125 126 127 128 129
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
130
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
131
            "(Tensor) The output tensor of convolution operator. "
132 133
            "The format of output tensor is also NCHW.")
      .Reuse("Input");
C
chengduoZH 已提交
134 135 136 137
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
138
      .SetDefault({1, 1});
C
chengduoZH 已提交
139 140 141 142
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
143 144 145
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
146
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
147 148 149 150
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
151
      .SetDefault(1);
C
chengduoZH 已提交
152
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
153 154
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
155
                            "convolution operator.")
C
chengduoZH 已提交
156
      .SetDefault({1, 1});
157 158 159 160
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
161 162 163
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
chengduoZH 已提交
180
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
181 182
Convolution Operator.

C
chengduoZH 已提交
183
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
184
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
185
parameters is checked in the infer-shape.
C
chengduoZH 已提交
186
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
187
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
188 189 190 191 192 193
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
194 195 196 197
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
198 199
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
200
  Output:
C
chengduoZH 已提交
201 202 203 204 205 206
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
207
)DOC");
C
chengduoZH 已提交
208 209
}

Y
Yu Yang 已提交
210
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
211 212
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
213
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
214
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
215 216 217
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
218
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
219
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
220 221
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
222 223 224
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
225 226
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
227
            "(Tensor) The output tensor of convolution operator."
228 229
            "The format of output tensor is also NCDHW.")
      .Reuse("Input");
C
chengduoZH 已提交
230 231 232 233
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
234
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
235 236 237 238
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
239 240 241
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
242
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
243 244 245 246
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
247
      .SetDefault(1);
C
chengduoZH 已提交
248
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
249 250
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
251
                            "convolution operator.")
C
chengduoZH 已提交
252
      .SetDefault({1, 1, 1});
253 254 255 256
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
257 258 259
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
C
fix doc  
chengduoZH 已提交
275

C
chengduoZH 已提交
276
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
277 278
Convolution3D Operator.

C
chengduoZH 已提交
279
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
280
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
281
parameters is checked in the infer-shape.
C
chengduoZH 已提交
282
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
283
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
284 285 286 287 288 289
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
290 291 292 293
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
294 295
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
296
  Output:
C
chengduoZH 已提交
297 298 299 300 301 302 303
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
304 305 306
)DOC");
}

C
chengduoZH 已提交
307 308 309 310 311 312 313 314 315 316 317
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

318 319
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
320
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
321 322 323 324
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
325
#ifdef PADDLE_WITH_CUDA
326 327
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
328 329
  }
#endif
330 331 332 333
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
334
    layout_ = framework::DataLayout::kMKLDNN;
335
  }
336
#endif
337 338 339 340 341 342

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
343 344 345 346
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
347
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
348 349
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
350 351

// depthwise convolution op
Y
Yang Yang 已提交
352
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
353 354
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
Y
Yang Yang 已提交
355
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
356 357
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
358

359 360
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
361
REGISTER_OP_CPU_KERNEL(
362
    depthwise_conv2d,
X
xzl 已提交
363 364 365 366
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
367
    depthwise_conv2d_grad,
X
xzl 已提交
368 369
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
370

C
chengduoZH 已提交
371
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
372 373 374 375 376 377
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
378 379

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
380 381 382 383 384 385
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);