conv_op.cc 18.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
57

Y
Yang Yu 已提交
58
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
59
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
60
                    "channels * groups.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
62
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
63 64 65
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
67 68 69
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
70
  }
71
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
72
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
73 74
}

75 76
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
77
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
78
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
79
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
80 81
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
82
#ifdef PADDLE_WITH_CUDA
83
  if (platform::CanCUDNNBeUsed(ctx)) {
84
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
85 86
  }
#endif
87
#ifdef PADDLE_WITH_MKLDNN
88
  if (library == framework::LibraryType::kPlain &&
89
      platform::CanMKLDNNBeUsed(ctx)) {
90
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
91
    layout = framework::DataLayout::kMKLDNN;
92
  }
93
#endif
94

K
Kexin Zhao 已提交
95 96 97 98 99 100 101 102
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
  auto filter_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
103
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
104 105 106
                      "float16 can only be used when CUDNN is used");
  }

107 108
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DOpMaker::Make() {
112 113 114 115
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
116 117
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
118 119 120 121
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
122
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
123
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
124 125
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
126 127
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
128
           "input image channels divided by the groups.");
129 130 131 132 133
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
134
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
135
            "(Tensor) The output tensor of convolution operator. "
136
            "The format of output tensor is also NCHW.");
137 138 139
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
140
           "Used with fuse_residual_connection fusion.")
141
      .AsDispensable();
C
chengduoZH 已提交
142 143 144 145
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
146
      .SetDefault({1, 1});
C
chengduoZH 已提交
147 148 149 150
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
151 152 153
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
154
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
155 156 157 158
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
159
      .SetDefault(1);
C
chengduoZH 已提交
160
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
161 162
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
163
                            "convolution operator.")
C
chengduoZH 已提交
164
      .SetDefault({1, 1});
165 166 167 168
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
169 170 171
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
172 173
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
174
  AddAttr<bool>("fuse_residual_connection",
175
                "(bool, default false) Only used in mkldnn kernel. Used "
176 177
                "whenever convolution output is as an input to residual "
                "connection.")
178
      .SetDefault(false);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
195 196 197 198 199
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
200
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
201 202
Convolution Operator.

C
chengduoZH 已提交
203
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
204
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
205
parameters is checked in the infer-shape.
C
chengduoZH 已提交
206
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
207
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
208 209 210 211 212 213
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
214 215 216 217
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
218 219
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
220
  Output:
C
chengduoZH 已提交
221 222 223 224 225 226
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
227
)DOC");
C
chengduoZH 已提交
228 229
}

C
chengduo 已提交
230 231 232 233 234 235 236 237 238
class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
};

Y
Yu Yang 已提交
239
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
240 241
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
242
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
243
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
244 245 246
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
247
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
248
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
249 250
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
251 252 253
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
254 255
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
256
            "(Tensor) The output tensor of convolution operator."
257
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
258 259 260 261
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
262
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
263 264 265 266
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
267 268 269
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
270
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
271 272 273 274
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
275
      .SetDefault(1);
C
chengduoZH 已提交
276
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
277 278
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
279
                            "convolution operator.")
C
chengduoZH 已提交
280
      .SetDefault({1, 1, 1});
281 282 283 284
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
285 286 287
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
303 304 305 306 307
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
308
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
309 310
Convolution3D Operator.

C
chengduoZH 已提交
311
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
312
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
313
parameters is checked in the infer-shape.
C
chengduoZH 已提交
314
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
315
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
316 317 318 319 320 321
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
322 323 324 325
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
326 327
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
328
  Output:
C
chengduoZH 已提交
329 330 331 332 333 334 335
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
336 337 338
)DOC");
}

C
chengduoZH 已提交
339 340 341 342 343 344 345 346 347 348 349
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

350 351
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
352
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
353 354 355 356
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
357
#ifdef PADDLE_WITH_CUDA
358 359
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
360 361
  }
#endif
362 363 364 365
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
366
    layout_ = framework::DataLayout::kMKLDNN;
367
  }
368
#endif
369 370 371 372 373 374

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
375 376 377 378
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
379
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
C
chengduo 已提交
380
                  ops::ConvOpInferVarType,
381 382
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
383 384

// depthwise convolution op
Y
Yang Yang 已提交
385
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
386 387
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
388

Y
Yang Yang 已提交
389
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
390
                  ops::ConvOpInferVarType,
391 392
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
393

394 395
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
396
REGISTER_OP_CPU_KERNEL(
397
    depthwise_conv2d,
X
xzl 已提交
398 399 400 401
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
402
    depthwise_conv2d_grad,
X
xzl 已提交
403 404
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
405

C
chengduoZH 已提交
406
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
407 408 409 410 411 412
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
413 414

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
415 416 417 418 419 420
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);