nn.py 200.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
Y
ying 已提交
33 34 35
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
36
    'dynamic_lstmp',
G
guosheng 已提交
37
    'dynamic_gru',
Y
ying 已提交
38 39 40 41 42 43 44 45 46
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
47
    'conv3d',
Y
ying 已提交
48
    'sequence_pool',
49 50
    'sequence_softmax',
    'softmax',
Y
ying 已提交
51
    'pool2d',
Y
yuyang18 已提交
52
    'pool3d',
Y
ying 已提交
53 54 55
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
56
    'conv3d_transpose',
Y
ying 已提交
57
    'sequence_expand',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
yangyaming 已提交
89
    'lod_reset',
D
dragonwarrior 已提交
90
    'lrn',
G
guosheng 已提交
91
    'pad',
92
    'label_smooth',
93
    'roi_pool',
W
whs 已提交
94
    'dice_loss',
F
fengjiayi 已提交
95 96
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
97
    'resize_bilinear',
W
whs 已提交
98
    'gather',
99
    'random_crop',
Y
yuyang18 已提交
100 101 102
    'mean_iou',
    'relu',
    'log',
103
    'crop',
104
    'rank_loss',
J
jerrywgz 已提交
105
    'prelu',
106
    'flatten',
Y
Yu Yang 已提交
107 108 109 110 111 112 113 114
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
115
       use_mkldnn=False,
Y
Yu Yang 已提交
116
       act=None,
J
Jacek Czaja 已提交
117
       is_test=False,
118
       name=None):
Y
Yu Yang 已提交
119
    """
120
    **Fully Connected Layer**
Y
Yu Yang 已提交
121

122 123 124 125 126 127 128 129
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
130
    to the output as well.
C
caoying03 已提交
131

C
caoying03 已提交
132
    This process can be formulated as follows:
133 134 135

    .. math::

136
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
137 138 139

    In the above equation:

C
caoying03 已提交
140 141 142 143
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
144
    * :math:`Act`: The activation function.
C
caoying03 已提交
145
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
146 147

    Args:
R
ranqiu 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
163 164
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
165
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
166
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
167 168
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
169
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
170

171
    Returns:
F
fengjiayi 已提交
172
        Variable: The transformation result.
173 174

    Raises:
C
caoying03 已提交
175
        ValueError: If rank of the input tensor is less than 2.
176 177 178 179

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
180
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
181
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
182
    """
C
caoying03 已提交
183

C
caoying03 已提交
184
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
185 186 187 188

    dtype = helper.input_dtype()

    mul_results = []
189 190
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
191 192 193
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
194

Y
Yu Yang 已提交
195
        w = helper.create_parameter(
196 197
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
198
        helper.append_op(
199 200 201
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
202
            outputs={"Out": tmp},
M
mozga-intel 已提交
203 204
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
205 206 207 208
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
209
    else:
210 211
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
212 213 214 215
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
216 217 218 219
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
220 221


222 223 224
def embedding(input,
              size,
              is_sparse=False,
225
              is_distributed=False,
226 227 228
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
229
    """
230 231
    **Embedding Layer**

232
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
233 234
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
235 236 237

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
238 239

    Args:
240 241 242 243 244
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
245
        is_distributed(bool): Whether to run lookup table from remote parameter server.
246 247
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
248
            with zeros whenever lookup encounters it in :attr:`input`. If
249
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
250 251
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
252
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
253

254 255 256
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
257

258 259
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
260

C
chengduoZH 已提交
261
          dict_size = len(dataset.ids)
262
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
263
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
264 265 266 267 268 269
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
270 271
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
272 273 274 275 276
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
277 278 279 280 281
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
282 283 284
    return tmp


Y
yi.wu 已提交
285
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
286 287
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
288 289
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
290 291 292 293 294 295 296
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
297 298
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
299
    """
Y
yi.wu 已提交
300
    ${comment}
Y
Yibing Liu 已提交
301 302

    Args:
Y
yi.wu 已提交
303 304
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
305 306 307 308 309 310 311
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

312
        param_attr(ParamAttr|None): The parameter attribute for the learnable
313
                               hidden-hidden weights.
Y
Yibing Liu 已提交
314 315 316

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
317 318
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
319
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
320 321 322
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
323

324
                              1. `use_peepholes = False`
Y
yi.wu 已提交
325 326
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
327
                              2. `use_peepholes = True`
Y
yi.wu 已提交
328
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
329
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
330
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
331 332 333 334 335 336 337 338
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
339 340

    Returns:
Y
Yibing Liu 已提交
341 342
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
343

Y
Yibing Liu 已提交
344
    Examples:
Y
Yibing Liu 已提交
345 346
        .. code-block:: python

Y
Yibing Liu 已提交
347 348
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
349
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
350 351
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
352
    """
353

Y
Yu Yang 已提交
354
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
355
    size = size // 4
Y
Yu Yang 已提交
356 357 358 359 360 361 362 363 364 365 366 367
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
368 369 370 371 372 373 374 375 376 377
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
378 379 380

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
381
        inputs=inputs,
Y
Yu Yang 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
398 399 400 401 402 403 404 405 406 407 408
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
409 410
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
411 412 413
    """
    **Dynamic LSTMP Layer**

414 415 416 417 418 419
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
420 421 422 423 424

    The formula is as follows:

    .. math::

425
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
426

427
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
428

429
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
430

431
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
432

433
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
434

435
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
436

437
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
438

Y
Yibing Liu 已提交
439 440 441 442 443 444
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
445
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
446
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
447
          bias vector).
Y
Yibing Liu 已提交
448 449 450
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
451
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
452
    * :math:`h`: The hidden state.
453
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
454 455
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
456
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
457
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
458
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
459 460
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
461 462 463 464

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
465

Y
Yibing Liu 已提交
466 467 468 469 470 471 472 473 474 475 476 477
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
478
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
479 480
                               hidden-hidden weight and projection weight.

481 482
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
483 484
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
485 486
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
487 488
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
489 490 491 492 493 494
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
495
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
496 497 498
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
499
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
500 501 502 503 504 505 506 507 508
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
509
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
510 511
                              default "tanh".
        proj_activation(str): The activation for projection output.
512
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
513 514
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
515 516
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
517 518

    Returns:
519 520 521 522
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
523 524

    Examples:
525

Y
Yibing Liu 已提交
526 527
        .. code-block:: python

528 529 530 531
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
532
            hidden_dim, proj_dim = 512, 256
533
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
534
                                     act=None, bias_attr=None)
535 536 537
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
538 539 540 541
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
542
    """
543

Y
Yibing Liu 已提交
544
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
545
    size = size // 4
Y
Yibing Liu 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
590 591 592 593 594 595 596 597 598
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
599
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
600

601
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
602
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
603

G
guosheng 已提交
604 605 606 607 608 609 610 611 612
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
613

G
guosheng 已提交
614
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
615

G
guosheng 已提交
616
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
617 618
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
619 620 621 622
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
623
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
624 625

    Args:
626 627
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
628
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
629
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
630 631
            is the hidden size.
        size(int): The dimension of the gru cell.
632
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
633 634
            hidden-hidden weight matrix. Note:

635
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
636
              :math:`D` is the hidden size.
637
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
638
              The first part are weights of the update gate and reset gate with
639
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
640
              candidate hidden state with shape :math:`(D \\times D)`.
641
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
642
            hidden-hidden bias.
643
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
644 645 646
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
647
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
648
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
649 650 651 652
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
653 654

    Returns:
G
guosheng 已提交
655
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
656
            and sequence length is the same with the input.
657

G
guosheng 已提交
658
    Examples:
659

G
guosheng 已提交
660 661
        .. code-block:: python

662 663 664 665
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
666
            hidden_dim = 512
667
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
668 669 670 671 672 673 674 675 676 677
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
678
    batch_size = input.shape[0]
G
guosheng 已提交
679 680 681
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
682 683 684
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
708 709 710
def gru_unit(input,
             hidden,
             size,
711 712
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
713
             activation='tanh',
714
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
715
    """
716
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
717

718 719
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
720

721
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
722

723
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
724

725
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
726 727

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
728 729 730
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
731 732
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

733 734
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
735 736 737
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
738 739 740 741 742

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
743 744
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
745 746 747 748
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
749

750 751 752 753 754 755
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
756

757
             # assuming we have x_t_data and prev_hidden of size=10
758
             x_t = fluid.layers.fc(input=x_t_data, size=30)
759 760
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
761 762 763 764 765 766 767 768 769 770 771 772

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
773
    size = size // 3
Y
Yu Yang 已提交
774 775

    # create weight
776 777
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
778

779 780 781 782
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
783
    # create bias
784
    if helper.bias_attr:
Y
Yu Yang 已提交
785 786 787
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
788
        inputs['Bias'] = bias
Y
Yu Yang 已提交
789 790 791

    helper.append_op(
        type='gru_unit',
792
        inputs=inputs,
Y
Yu Yang 已提交
793 794 795 796 797 798
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
799 800
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
801 802 803 804 805
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
806
@templatedoc()
807
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
808 809 810 811 812 813 814
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
815
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
816 817 818 819
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
820 821 822
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
823 824

    """
Y
Yu Yang 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
850
@templatedoc()
851
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
852 853 854 855 856
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
857

Y
yuyang18 已提交
858
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
859

Y
yuyang18 已提交
860 861 862
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
863
        Variable: ${viterbi_path_comment}
864

Y
yi.wu 已提交
865 866 867 868 869
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
870
    """
Y
Yu Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
884
@templatedoc()
F
fengjiayi 已提交
885
def cos_sim(X, Y):
Y
Yu Yang 已提交
886
    """
Y
yi.wu 已提交
887 888 889
    ${comment}

    Args:
890 891
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
892

Y
yi.wu 已提交
893
    Returns:
894
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
895
    """
F
fengjiayi 已提交
896
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


910
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
911 912 913 914 915
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
916
    training. The dropout operator randomly sets (according to the given dropout
917 918 919 920
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
921 922
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
923 924 925 926 927 928 929
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
930 931

    Returns:
932
        Variable: A tensor variable is the shape with `x`.
933 934

    Examples:
935

936 937
        .. code-block:: python

938 939
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
940 941
    """

F
fengjiayi 已提交
942
    helper = LayerHelper('dropout', **locals())
943 944
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
945 946 947 948

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

949 950 951 952 953
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
954 955 956 957 958 959
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
960 961 962
    return out


F
fengjiayi 已提交
963
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
964
    """
Y
Yibing Liu 已提交
965 966
    **Cross Entropy Layer**

967 968 969
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
970 971

    1) One-hot cross-entropy:
F
fengjiayi 已提交
972
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
973

Y
Yibing Liu 已提交
974
        .. math::
Y
yangyaming 已提交
975

Y
Yibing Liu 已提交
976 977 978
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
979 980
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
981 982 983 984 985

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
986
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
987 988 989
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
990 991
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
992
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
993

Y
Yibing Liu 已提交
994
    Args:
Y
yangyaming 已提交
995
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
996 997 998 999
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1000
        label (Variable|list): the ground truth which is a 2-D tensor. When
1001 1002 1003 1004
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1005
        soft_label (bool): a flag indicating whether to
1006 1007
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1008 1009 1010 1011 1012

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1013 1014 1015 1016 1017
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1018 1019 1020 1021 1022 1023

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1024
    """
F
fengjiayi 已提交
1025
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1032
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1033 1034 1035
    return out


F
fengjiayi 已提交
1036
def square_error_cost(input, label):
Y
Yu Yang 已提交
1037
    """
1038 1039
    **Square error cost layer**

1040 1041
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1056 1057
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1058 1059

    Returns:
G
guosheng 已提交
1060
        Variable: The tensor variable storing the element-wise squared error \
1061
                  difference of input and label.
1062 1063 1064 1065 1066 1067 1068 1069

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1070
    """
F
fengjiayi 已提交
1071
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1081 1082
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1083 1084 1085
    return square_out


Y
yi.wu 已提交
1086
@templatedoc()
Y
Yu Yang 已提交
1087 1088 1089 1090
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1091
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1092
    """
Y
yi.wu 已提交
1093
    **Chunk Evaluator**
Y
yi.wu 已提交
1094

Y
yangyaming 已提交
1095
    This function computes and outputs the precision, recall and
1096
    F1-score of chunk detection.
Y
yi.wu 已提交
1097

Y
yi.wu 已提交
1098 1099 1100 1101 1102 1103 1104 1105
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1106

Y
yi.wu 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1132

Y
yi.wu 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1157
    Args:
1158 1159 1160 1161 1162
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1163

Y
yi.wu 已提交
1164
    Returns:
Y
update  
yi.wu 已提交
1165 1166 1167
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1168

Y
yi.wu 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1181
    """
F
fengjiayi 已提交
1182
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1183 1184 1185 1186 1187

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1188 1189 1190
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1191 1192 1193 1194 1195 1196 1197 1198

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1199 1200 1201 1202
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1203 1204 1205
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1206 1207
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1208
        })
1209 1210
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1211 1212


1213
@templatedoc()
Y
Yu Yang 已提交
1214 1215 1216 1217 1218 1219 1220
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1221
                  act=None):
Y
Yu Yang 已提交
1222 1223 1224 1225
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1236

1237 1238
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1257
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1258 1259 1260 1261 1262 1263
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1264
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1265 1266 1267
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1268
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1311
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1312
    """
1313
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1314
    has the same shape as the input.
Q
qiaolongfei 已提交
1315

1316 1317 1318 1319 1320 1321
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1322
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1323 1324 1325 1326 1327 1328 1329

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1330
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1365 1366 1367
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1368 1369
           stride=1,
           padding=0,
1370
           dilation=1,
Y
Yu Yang 已提交
1371 1372 1373
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1374
           use_cudnn=True,
1375
           use_mkldnn=False,
1376 1377
           act=None,
           name=None):
Y
Yu Yang 已提交
1378
    """
C
chengduoZH 已提交
1379
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1380 1381
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1382
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1383 1384 1385 1386 1387 1388 1389
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1390 1391 1392
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1393

1394
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1395

C
chengduoZH 已提交
1396 1397
    .. math::

C
refine  
chengduoZH 已提交
1398
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1399

T
tensor-tang 已提交
1400
    Where:
C
chengduoZH 已提交
1401

1402 1403 1404 1405 1406
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1407
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1408 1409 1410

    Example:

1411 1412
        - Input:

W
weixing02 已提交
1413
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1414

W
weixing02 已提交
1415
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1416

1417
        - Output:
T
tensor-tang 已提交
1418

W
weixing02 已提交
1419
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1420

C
chengduoZH 已提交
1421
        Where
1422 1423

        .. math::
C
chengduoZH 已提交
1424

W
weixing02 已提交
1425 1426
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1427 1428

    Args:
1429
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1430
        num_filters(int): The number of filter. It is as same as the output
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1453 1454
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1455 1456 1457
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1458 1459

    Returns:
G
guosheng 已提交
1460
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1461 1462
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1463
    Raises:
1464 1465
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1466

C
chengduoZH 已提交
1467 1468 1469
    Examples:
        .. code-block:: python

1470 1471
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1472 1473 1474
    """

    num_channels = input.shape[1]
1475 1476

    l_type = 'conv2d'
X
xzl 已提交
1477 1478
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1479
        l_type = 'depthwise_conv2d'
1480 1481 1482 1483

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1484 1485 1486 1487 1488
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1489
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1490

C
chengduoZH 已提交
1491 1492 1493
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1494
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1495

C
chengduoZH 已提交
1496 1497
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1498 1499

    input_shape = input.shape
M
minqiyang 已提交
1500
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1515
        type=l_type,
Y
Yu Yang 已提交
1516 1517 1518 1519 1520
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1521 1522 1523
        attrs={
            'strides': stride,
            'paddings': padding,
1524
            'dilations': dilation,
C
chengduoZH 已提交
1525
            'groups': groups,
1526 1527
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1528
        })
Y
Yu Yang 已提交
1529 1530 1531 1532 1533 1534

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1553 1554 1555 1556 1557 1558
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1568 1569
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1570 1571 1572
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1573
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1599
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1600 1601
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1602
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1603 1604
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1605
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1606 1607
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1608
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1635 1636
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1651
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1692
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1693 1694 1695 1696

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1697
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1698
    """
Y
yangyaming 已提交
1699 1700 1701
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1713
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1714 1715 1716 1717 1718
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1719
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725 1726

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1727 1728
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1729

L
Luo Tao 已提交
1730 1731
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1732
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1733 1734 1735 1736 1737 1738 1739 1740
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1741

Y
yangyaming 已提交
1742
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1743 1744 1745 1746 1747
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1748 1749
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1750
    """
F
fengjiayi 已提交
1751
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1763 1764 1765 1766 1767
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1768 1769 1770
    return pool_out


F
fengjiayi 已提交
1771
def sequence_first_step(input):
L
Luo Tao 已提交
1772
    """
L
Luo Tao 已提交
1773
    This function gets the first step of sequence.
L
Luo Tao 已提交
1774 1775 1776 1777

    .. code-block:: text

       x is a 1-level LoDTensor:
1778
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1779 1780 1781 1782 1783
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1784
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1785
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1786

L
Luo Tao 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1796

Y
yangyaming 已提交
1797
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1798 1799 1800
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1801 1802 1803
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1804
def sequence_last_step(input):
L
Luo Tao 已提交
1805
    """
L
Luo Tao 已提交
1806
    This function gets the last step of sequence.
L
Luo Tao 已提交
1807 1808 1809 1810

    .. code-block:: text

       x is a 1-level LoDTensor:
1811
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1812 1813 1814 1815 1816
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1817
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1818
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1819

L
Luo Tao 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1829

Y
yangyaming 已提交
1830
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1831 1832 1833
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1834 1835 1836
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1837
@templatedoc()
Y
Yu Yang 已提交
1838
def pool2d(input,
C
chengduoZH 已提交
1839 1840
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1841 1842
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1843
           global_pooling=False,
C
chengduoZH 已提交
1844
           use_cudnn=True,
1845
           ceil_mode=False,
1846
           use_mkldnn=False,
C
caoying03 已提交
1847
           name=None):
Y
Yu Yang 已提交
1848
    """
F
fengjiayi 已提交
1849
    ${comment}
1850 1851

    Args:
1852 1853 1854
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1855
                          feature, and W is the width of the feature.
1856
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1857
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1858
        pool_type: ${pooling_type_comment}
1859 1860
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1861 1862 1863 1864
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1865
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1866 1867
                        layer will be named automatically.

1868
    Returns:
F
fengjiayi 已提交
1869
        Variable: The pooling result.
F
fengjiayi 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1883 1884 1885 1886
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1887
                            global_pooling=False)
Y
Yu Yang 已提交
1888 1889 1890 1891 1892
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1893

C
chengduoZH 已提交
1894 1895 1896 1897 1898
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1899 1900 1901 1902
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1903 1904
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1905

C
Add doc  
chengduoZH 已提交
1906
    l_type = 'pool2d'
1907 1908

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1909 1910 1911 1912
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1942
    pooling configurations mentioned in input parameters.
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1956

1957
    Returns:
1958
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1959 1960 1961 1962 1963
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1964

C
chengduoZH 已提交
1965 1966 1967 1968 1969
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1970 1971 1972
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1973

C
chengduoZH 已提交
1974 1975
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1976

1977 1978
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1979 1980 1981 1982
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1983
        type=l_type,
Y
Yu Yang 已提交
1984 1985 1986 1987 1988 1989 1990
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1991
            "paddings": pool_padding,
1992
            "use_cudnn": use_cudnn,
1993 1994
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2007
               data_layout='NCHW',
Y
Yang Yang 已提交
2008
               in_place=False,
2009
               use_mkldnn=False,
2010 2011
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2012
               moving_variance_name=None,
2013 2014
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2015
    """
Q
qiaolongfei 已提交
2016 2017 2018 2019
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2020

Q
qiaolongfei 已提交
2021
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2022

Q
qiaolongfei 已提交
2023 2024
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2025 2026 2027
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2040 2041

    Args:
Q
qiaolongfei 已提交
2042
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2043 2044 2045 2046
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2047 2048 2049
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2050
        in_place(bool, Default False): This argument is deprecated since 0.15.0.
Q
qiaolongfei 已提交
2051 2052 2053 2054 2055
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2056
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2057
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2058 2059

    Returns:
Q
qiaolongfei 已提交
2060
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2061 2062 2063 2064 2065 2066 2067

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2068 2069 2070 2071
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

2072 2073 2074 2075
    if in_place:
        raise warnings.warn("The argument in_place is deprecated since 0.15.0, "
                            "please do not set it True.")

Y
Yu Yang 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2095
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2096

2097 2098
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2099 2100 2101
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2102
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2103
        shape=param_shape,
2104 2105 2106 2107 2108 2109 2110
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2111
            trainable=False,
W
wanghaoshuang 已提交
2112
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2113
        shape=param_shape,
2114 2115
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2116 2117 2118 2119 2120 2121

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2122 2123
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2124

2125
    batch_norm_out = helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2143 2144 2145 2146
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2147 2148
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2149
        })
Y
Yu Yang 已提交
2150 2151 2152 2153

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2154
@templatedoc()
G
guosheng 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2165
    ${comment}
G
guosheng 已提交
2166 2167 2168

    The formula is as follows:

Y
yuyang18 已提交
2169
    ..  math::
G
guosheng 已提交
2170 2171 2172 2173 2174 2175 2176

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2177 2178 2179 2180 2181 2182 2183 2184
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2185

G
guosheng 已提交
2186 2187
    Args:
        input(Variable): The input tensor variable.
2188
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2189
            normalization.
2190
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2191
            normalization.
2192
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2193
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2194
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2195 2196 2197 2198 2199 2200
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2201
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2202 2203

    Returns:
Y
yuyang18 已提交
2204
        ${y_comment}
G
guosheng 已提交
2205 2206 2207

    Examples:

Y
yuyang18 已提交
2208 2209 2210
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2226
    if shift:
G
guosheng 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2251 2252 2253 2254
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2255 2256 2257
                     padding=0,
                     stride=1,
                     dilation=1,
2258
                     groups=None,
C
caoying03 已提交
2259
                     param_attr=None,
2260
                     bias_attr=None,
C
chengduoZH 已提交
2261
                     use_cudnn=True,
2262
                     act=None,
C
caoying03 已提交
2263
                     name=None):
Y
Yu Yang 已提交
2264
    """
2265 2266 2267 2268 2269 2270 2271 2272
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2273 2274
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2275 2276 2277
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2278 2279 2280 2281 2282

    For each input :math:`X`, the equation is:

    .. math::

2283
        Out = \sigma (W \\ast X + b)
2284

2285
    Where:
2286 2287 2288

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2289 2290 2291 2292
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2293

2294 2295 2296 2297
    Example:

        - Input:

2298
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2299

2300
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2301 2302 2303

        - Output:

2304
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2305 2306

        Where
Y
Yu Yang 已提交
2307

2308 2309 2310 2311
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2312 2313

    Args:
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2347 2348

    Returns:
2349
        Variable: The tensor variable storing the convolution transpose result.
2350 2351

    Raises:
2352 2353
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2354 2355 2356 2357

    Examples:
       .. code-block:: python

2358 2359
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2360
    """
2361 2362 2363 2364 2365 2366 2367 2368 2369

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2370 2371 2372
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2373 2374 2375
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2376

C
chengduoZH 已提交
2377 2378
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2379

Y
Yu Yang 已提交
2380 2381 2382 2383 2384
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2385

Y
Yu Yang 已提交
2386 2387
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2388

C
chengduoZH 已提交
2389
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2390
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2391
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2392
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2393
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2394 2395 2396
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2397

2398
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2399
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2400 2401 2402
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2403
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2404
    helper.append_op(
2405
        type=op_type,
Y
Yu Yang 已提交
2406 2407
        inputs={'Input': [input],
                'Filter': [img_filter]},
2408
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2409
        attrs={
2410 2411 2412 2413 2414
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2415 2416
        })

2417 2418 2419
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2420 2421


2422
def conv3d_transpose(input,
Y
Yu Yang 已提交
2423 2424 2425
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2426 2427 2428
                     padding=0,
                     stride=1,
                     dilation=1,
2429
                     groups=None,
C
caoying03 已提交
2430
                     param_attr=None,
2431
                     bias_attr=None,
C
chengduoZH 已提交
2432
                     use_cudnn=True,
2433
                     act=None,
C
caoying03 已提交
2434
                     name=None):
Y
Yu Yang 已提交
2435
    """
2436
    **Convlution3D transpose layer**
2437

2438
    The convolution3D transpose layer calculates the output based on the input,
2439
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2440 2441 2442 2443 2444 2445
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2446 2447 2448
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2449 2450 2451 2452 2453

    For each input :math:`X`, the equation is:

    .. math::

2454
        Out = \sigma (W \\ast X + b)
2455 2456 2457

    In the above equation:

2458 2459
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2460 2461 2462 2463
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2464

2465 2466 2467 2468
    Example:

        - Input:

2469
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2470

2471
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2472 2473 2474

        - Output:

2475
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2476 2477

        Where
Y
Yu Yang 已提交
2478

2479 2480
        .. math::

2481 2482 2483
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2484 2485

    Args:
2486
        input(Variable): The input image with [N, C, D, H, W] format.
2487 2488 2489
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2490
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2491 2492
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2493
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2494 2495 2496
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2497 2498
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2499
        stride(int|tuple): The stride size. If stride is a tuple, it must
2500 2501
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2502
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2503 2504 2505
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2506 2507 2508 2509 2510
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2511 2512 2513
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2514 2515 2516 2517 2518
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2519 2520

    Returns:
2521
        Variable: The tensor variable storing the convolution transpose result.
2522 2523

    Raises:
2524 2525
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2526 2527 2528 2529

    Examples:
       .. code-block:: python

2530 2531
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2532
    """
2533 2534
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2535
    if not isinstance(input, Variable):
2536
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2537 2538
    input_channel = input.shape[1]

2539 2540 2541
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2542

C
chengduoZH 已提交
2543 2544 2545
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2546 2547 2548 2549 2550 2551
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2552 2553 2554
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2555

2556
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2557
                         padding[0] - 1) // dilation[0] + 1
2558
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2559
                         padding[1] - 1) // dilation[1] + 1
2560
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2561
                         padding[2] - 1) // dilation[2] + 1
2562
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2563
    else:
2564 2565
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2566

2567
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2568
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2569 2570 2571
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2572
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2573
    helper.append_op(
2574
        type=l_type,
Y
Yu Yang 已提交
2575 2576
        inputs={'Input': [input],
                'Filter': [img_filter]},
2577
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2578 2579 2580 2581
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2582
            'groups': groups,
C
chengduoZH 已提交
2583 2584
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2585

2586 2587
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2588
    return out
Y
yangyaming 已提交
2589 2590


Y
yangyaming 已提交
2591
def sequence_expand(x, y, ref_level=-1, name=None):
2592
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2593 2594 2595 2596
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2597 2598 2599 2600 2601

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2602
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2603
                x.data = [[a], [b], [c], [d]]
2604 2605 2606
                x.dims = [4, 1]

            y is a LoDTensor:
2607 2608
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2609

Y
yangyaming 已提交
2610
            ref_level: 0
2611

Y
yangyaming 已提交
2612
            then output is a 1-level LoDTensor:
2613
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2614
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2615 2616 2617 2618
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2619
                x.data = [[a], [b], [c]]
2620 2621 2622
                x.dims = [3, 1]

            y is a LoDTensor:
2623
                y.lod = [[2, 0, 3]]
2624

Y
yangyaming 已提交
2625
            ref_level: -1
2626

Y
yangyaming 已提交
2627 2628 2629
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2630 2631 2632
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2633 2634
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2635
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2636
                        will be named automatically.
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2647
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2648
    """
Y
yangyaming 已提交
2649
    helper = LayerHelper('sequence_expand', input=x, **locals())
2650 2651 2652
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2653 2654 2655 2656 2657
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2658
    return tmp
2659 2660


F
fengjiayi 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2706 2707 2708 2709 2710 2711 2712 2713 2714
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2715 2716
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2717 2718 2719

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2720 2721

    This layer does the search in beams for one time step. Specifically, it
2722 2723 2724 2725 2726 2727
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2728

2729 2730 2731 2732 2733 2734 2735 2736
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2737

2738
    Args:
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2764

2765
    Returns:
2766 2767
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2768 2769 2770 2771

    Examples:
        .. code-block:: python

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2800
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2818 2819 2820 2821 2822 2823 2824
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2835

2836 2837 2838 2839 2840 2841
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2842

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2868 2869 2870 2871
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2872
              param_attr=None,
C
caoying03 已提交
2873 2874
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2875 2876 2877 2878
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2879
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2880

2881
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2882

2883
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2884

2885
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2886 2887 2888

            h_t & = o_t tanh(c_t)

2889 2890 2891 2892 2893 2894
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2895 2896 2897

        .. math::

2898
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2899 2900 2901 2902 2903 2904 2905 2906

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2907
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2908 2909

    Args:
Y
yangyaming 已提交
2910 2911 2912 2913 2914 2915
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2916
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2917 2918
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2919 2920
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2921 2922
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2923 2924

    Returns:
Y
yangyaming 已提交
2925
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2926 2927

    Raises:
2928 2929 2930 2931
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2932 2933 2934 2935 2936 2937

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2938
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2939
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2940
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2957
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2958 2959 2960 2961
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2962 2963
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2964 2965 2966
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2967
    size = cell_t_prev.shape[1]
2968
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2969 2970
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2971
                param_attr=param_attr,
2972
                bias_attr=bias_attr)
Y
yangyaming 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2985
    return h, c
G
guosheng 已提交
2986 2987


C
caoying03 已提交
2988
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2989
    """
Y
yangyaming 已提交
2990
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2991 2992 2993

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2994
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2995 2996
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2997 2998
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2999
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3000
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3001
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3002 3003
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3004 3005 3006

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3007

G
guosheng 已提交
3008 3009 3010 3011 3012 3013
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3014
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3015 3016 3017 3018
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3019 3020 3021 3022

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3023
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3024 3025 3026
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3027 3028 3029
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3030 3031
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3032 3033 3034 3035 3036
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3037
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3038 3039 3040 3041
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3042 3043


C
caoying03 已提交
3044
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3045
    """
Y
Yibing Liu 已提交
3046
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3047 3048 3049

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3050 3051 3052
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3053
            must be in the range :math:`[-rank(input), rank(input))`. If
3054
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3055
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3056 3057
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3058
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3059
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3060
                       will be named automatically.
G
guosheng 已提交
3061 3062

    Returns:
Y
Yibing Liu 已提交
3063
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3064

G
guosheng 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3075 3076
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3077 3078 3079 3080 3081 3082 3083

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3084 3085 3086
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3087 3088
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3089 3090 3091 3092 3093
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3094
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3095 3096 3097 3098
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3099 3100


C
caoying03 已提交
3101
def reduce_max(input, dim=None, keep_dim=False, name=None):
3102
    """
Y
yangyaming 已提交
3103
    Computes the maximum of tensor elements over the given dimension.
3104 3105 3106

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3107
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3108 3109 3110
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3111
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3112 3113
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3114
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3115 3116
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3117 3118 3119

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3120

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3132 3133 3134 3135 3136 3137 3138

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3139 3140 3141
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3142 3143
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3144 3145 3146 3147 3148
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3149
            'dim': dim if dim != None else [0],
3150 3151 3152 3153 3154 3155
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3156
def reduce_min(input, dim=None, keep_dim=False, name=None):
3157
    """
Y
yangyaming 已提交
3158
    Computes the minimum of tensor elements over the given dimension.
3159 3160 3161

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3162
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3163 3164 3165
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3166
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3167 3168
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3169
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3170 3171
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3172 3173 3174

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3187 3188 3189 3190 3191 3192 3193

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3194 3195 3196
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3197 3198
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3199 3200 3201 3202 3203
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3204
            'dim': dim if dim != None else [0],
3205 3206 3207 3208
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3209 3210


3211 3212 3213 3214 3215 3216
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3217
        dim (list|int|None): The dimensions along which the product is performed. If
3218 3219
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3220 3221
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3222 3223 3224
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3225
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3226
            layer will be named automatically.
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3241
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3242
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3243 3244 3245 3246 3247 3248 3249

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3250 3251 3252
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3253 3254
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3255 3256 3257 3258 3259
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3260
            'dim': dim if dim != None else [0],
3261 3262 3263 3264 3265 3266
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3267
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3268
    """
C
caoying03 已提交
3269
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3270 3271 3272

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3273 3274 3275 3276 3277
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3278
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3279
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3280
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3281 3282
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3283 3284

    Returns:
D
dzhwinter 已提交
3285
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3295 3296
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3335
    .. math::
3336 3337

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3338 3339 3340 3341 3342

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3343
        x(Variable|list): The input tensor to l2_normalize layer.
3344
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3345 3346
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3347
        epsilon(float): The epsilon value is used to avoid division by zero, \
3348
            the defalut value is 1e-10.
3349
        name(str|None): A name for this layer(optional). If set None, the layer \
3350
            will be named automatically.
C
caoying03 已提交
3351 3352

    Returns:
3353
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3354 3355

    Examples:
3356

C
caoying03 已提交
3357 3358
        .. code-block:: python

3359 3360 3361 3362
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3363 3364
    """

F
fengjiayi 已提交
3365 3366
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3367 3368
    helper = LayerHelper("l2_normalize", **locals())

3369 3370
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3371
    helper.append_op(
3372 3373 3374 3375
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3376
        attrs={
3377 3378
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3379 3380
        })
    return out
3381 3382


3383
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3384
    """
Y
ying 已提交
3385 3386 3387 3388
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3389

C
chengduoZH 已提交
3390
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3391
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3392

3393 3394 3395 3396 3397
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3398
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3399

C
chengduoZH 已提交
3400
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3401
      performs in the following way.
G
guosheng 已提交
3402

3403
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3404
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3405
        last two dimensions and a batched matrix multiply supporting broadcast
3406
        applies on the two tensors.
G
guosheng 已提交
3407

Y
ying 已提交
3408 3409
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3410
    removed after matrix multiplication.
G
guosheng 已提交
3411 3412 3413

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3414 3415 3416
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3417
        name(str|None): A name for this layer(optional). If set None, the layer
3418
            will be named automatically.
G
guosheng 已提交
3419 3420

    Returns:
3421
        Variable: The product Tensor variable.
G
guosheng 已提交
3422

G
guosheng 已提交
3423 3424 3425
    Examples:
        .. code-block:: python

3426
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3427 3428
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3429

3430 3431
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3432

3433 3434
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3435

3436 3437
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3438 3439 3440 3441

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3442 3443
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3444

Y
ying 已提交
3445
            # x: [M], y: [N]
3446
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3447
    """
Y
ying 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3460
            y_shape = y_shape + [1]
Y
ying 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3477
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3478
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3479
    helper.append_op(
3480 3481 3482 3483 3484 3485 3486
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3487 3488


3489
def topk(input, k, name=None):
Q
qingqing01 已提交
3490 3491 3492 3493
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3494
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3495 3496 3497 3498 3499 3500
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3522 3523 3524
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3525
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3526
                 of input.
3527
        name(str|None): A name for this layer(optional). If set None, the layer
3528
                       will be named automatically.
F
fengjiayi 已提交
3529
                       Default: None
Q
qingqing01 已提交
3530 3531

    Returns:
3532 3533 3534
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3535
        within the last dimension of input.
Q
qingqing01 已提交
3536

F
fengjiayi 已提交
3537 3538
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3539 3540 3541 3542 3543 3544 3545

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3546
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3564
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3565
    """
Y
ying 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3575

Y
ying 已提交
3576
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3577

3578
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3579 3580
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3581
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3582

3583
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3584 3585
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3586

3587 3588 3589
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3590
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3591
                          the length of reference string.
3592
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3593
                                     calculating edit distance.
3594
        name (str): The name of this layer. It is optional.
3595

W
wanghaoshuang 已提交
3596
    Returns:
W
wanghaoshuang 已提交
3597
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3598 3599 3600 3601 3602

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3603
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3604
            cost = fluid.layers.edit_distance(input=x,label=y)
3605
    """
3606
    helper = LayerHelper("edit_distance", **locals())
3607

3608
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3609
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3610 3611 3612 3613 3614 3615 3616
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3617
            attrs={"tokens": ignored_tokens})
3618 3619 3620 3621 3622
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3623
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3624
            attrs={"tokens": ignored_tokens})
3625 3626
        label = erased_label

3627 3628
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3629
    sequence_num = helper.create_tmp_variable(dtype="int64")
3630 3631 3632 3633
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3634 3635
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3636 3637
        attrs={"normalized": normalized})

3638
    return edit_distance_out, sequence_num
3639 3640 3641 3642 3643


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3644

Y
ying 已提交
3645 3646 3647 3648
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3666
        input.lod = [[4, 4]]
3667 3668 3669 3670 3671 3672 3673

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3674
        output.lod = [[2, 1]]
3675 3676 3677

    Args:

Y
ying 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3687
        name (str): The name of this layer. It is optional.
3688 3689

    Returns:
3690
        Variable: CTC greedy decode result. If all the sequences in result were
3691
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3692 3693 3694 3695 3696

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3697

3698
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3699
    """
3700
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3701
    _, topk_indices = topk(input, k=1)
3702 3703 3704 3705 3706 3707

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3708
        outputs={"Output": [ctc_out]},
3709 3710
        attrs={"merge_repeated": True,
               "blank": blank})
3711
    return ctc_out
3712 3713


F
fengjiayi 已提交
3714
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3715
    """
3716 3717
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3718
    to compute Connectionist Temporal Classification (CTC) loss.
3719 3720
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3721 3722 3723
    input tensor.

    Args:
3724
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3725 3726 3727 3728
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3729
       label (Variable): The ground truth of variable-length sequence,
3730 3731 3732
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3733 3734
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3735 3736 3737
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3738
         follewed by a mean_op.
W
wanghaoshuang 已提交
3739 3740

    Returns:
3741 3742
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3743 3744

    Examples:
3745

W
wanghaoshuang 已提交
3746
        .. code-block:: python
3747

3748 3749 3750
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3751 3752

    """
F
fengjiayi 已提交
3753
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3780 3781 3782
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3783 3784 3785 3786 3787
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3788

3789
            out.lod  = [[0, 1, 3]]
3790 3791 3792 3793

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3794 3795 3796 3797 3798 3799 3800
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3801 3802 3803

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3804 3805

    Returns:
3806

3807 3808 3809 3810 3811
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3812
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3813
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3814 3815 3816 3817 3818 3819 3820 3821 3822
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3823 3824


3825 3826 3827 3828
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3829 3830 3831 3832 3833 3834 3835
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3836 3837 3838 3839 3840 3841 3842
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3843 3844
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3845
            sample is 1.0.
3846 3847 3848
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3849

3850
    Returns:
Y
Yibing Liu 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3878
    """
Y
Yang Yu 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3923
    return cost / (num_neg_samples + 1)
3924 3925


G
guosheng 已提交
3926
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3927 3928
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3929
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3939

W
weixing02 已提交
3940
    Args:
M
minqiyang 已提交
3941
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3942 3943 3944 3945 3946
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3947 3948
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3949
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3950 3951
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3952 3953 3954 3955 3956 3957 3958 3959

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3960 3961 3962
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3963 3964 3965 3966 3967 3968 3969 3970
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3971
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3972 3973 3974 3975 3976
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3977 3978 3979 3980 3981 3982 3983 3984
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3985 3986
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3987
        inputs=inputs,
W
weixing02 已提交
3988 3989 3990 3991 3992 3993
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3994
def transpose(x, perm, name=None):
Y
ying 已提交
3995 3996 3997 3998 3999 4000 4001
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4002 4003 4004
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4005 4006 4007 4008 4009 4010 4011 4012

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4013
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4014 4015
    """

Y
fix ci.  
ying 已提交
4016
    if len(perm) != len(x.shape):
Y
ying 已提交
4017 4018 4019
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4020 4021 4022 4023 4024 4025
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4026 4027

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4028
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4029 4030
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
4031
        inputs={'X': [x]},
Y
ying 已提交
4032 4033 4034
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
4035 4036


4037 4038 4039 4040 4041 4042 4043
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4044
    """
4045 4046 4047 4048 4049 4050 4051
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4080 4081 4082 4083 4084 4085 4086 4087 4088
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4089 4090 4091
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4092 4093 4094 4095 4096
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4124 4125 4126
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4139
            output.dims = {8, 8}
4140

4141
            output.lod = [[4, 4]]
4142

D
dzhwinter 已提交
4143
     Examples:
4144 4145 4146

        .. code-block:: python

4147 4148
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4149 4150

    """
W
wanghaoshuang 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4161 4162 4163 4164 4165 4166 4167
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4168
    helper = LayerHelper('im2sequence', **locals())
4169 4170
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4171
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4172
    return out
4173 4174


Y
yuyang18 已提交
4175
@templatedoc()
4176
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4177 4178
    """
    ${comment}
4179 4180

    Args:
Y
yuyang18 已提交
4181
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4182 4183
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4184 4185 4186 4187 4188
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4189
        ${out_comment}.
4190 4191

    Examples:
Y
yuyang18 已提交
4192 4193 4194 4195
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4208
    return helper.append_activation(out)
4209 4210


Y
yuyang18 已提交
4211
@templatedoc()
4212 4213
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4214 4215 4216 4217 4218 4219 4220
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4221 4222

    Args:
Y
yuyang18 已提交
4223 4224
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4225 4226

    Returns:
Y
yuyang18 已提交
4227
        ${out_comment}.
4228 4229
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4230 4231 4232 4233 4234 4235

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4236 4237 4238 4239 4240 4241
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4242 4243 4244 4245 4246


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4247

4248 4249 4250 4251
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4252

4253 4254 4255
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4256

4257 4258 4259
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4260

4261
    The equation is as follows:
4262

4263
    1) Hard label (one-hot label, so every sample has exactly one class)
4264

4265 4266 4267 4268
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4269

4270 4271 4272
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4295 4296
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4313 4314
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4315
    For each instance, it computes the smooth L1 loss element by element first
4316
    and then sums all the losses. So the shape of ouput Variable is
4317
    [batch_size, 1].
4318

4319 4320
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4321
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4322
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4323
            L1 loss op with same shape as :attr:`x`.
4324
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4325 4326
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4327
            by this tensor element by element.
4328
        outside_weight (Variable|None): A tensor with rank at least 2. This
4329 4330
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4331
            element by element.
4332
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4333 4334
           scalar with default value 1.0.

4335
    Returns:
4336
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4337 4338 4339 4340 4341

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4342 4343
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4344
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4345
            out = fluid.layers.smooth_l1(x=fc, y=label)
4346
    """
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4363 4364 4365 4366


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4367
    This layer creates the one-hot representations for input indices.
4368 4369

    Args:
Y
Yibing Liu 已提交
4370 4371
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4372 4373

    Returns:
Y
Yibing Liu 已提交
4374
        Variable: The one-hot representations of input.
4375 4376

    Examples:
C
caoying03 已提交
4377
        .. code-block:: python
4378

Y
Yibing Liu 已提交
4379 4380
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4381 4382 4383 4384 4385 4386 4387 4388 4389
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4390 4391


Y
Yu Yang 已提交
4392
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4393
    """
Y
yi.wu 已提交
4394 4395 4396
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4397 4398 4399 4400 4401 4402

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4403 4404
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4405 4406 4407 4408 4409 4410

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4411 4412
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4413 4414
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4415 4416 4417 4418 4419
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4420
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4421
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4422 4423
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4424 4425
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4426 4427 4428
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4429 4430


4431
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4432
    """
C
caoying03 已提交
4433 4434
    Gives a new shape to the input Tensor without changing its data.

4435 4436 4437 4438 4439
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4440

4441
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4442

4443 4444 4445 4446
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4447
    2. 0 means the actual dimension value is going to be copied from the
4448 4449 4450 4451
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4452 4453

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4454
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4455
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4456

4457
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4458 4459
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4460 4461
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4462
    dimensions.
C
caoying03 已提交
4463

4464
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4465 4466 4467 4468
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4469 4470

    Args:
4471
        x(variable): The input tensor.
C
caoying03 已提交
4472 4473
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4474 4475 4476 4477 4478
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4479
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4480 4481 4482 4483
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4484
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4485

4486 4487
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4488

X
Xin Pan 已提交
4489 4490 4491
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4492 4493
    Examples:
        .. code-block:: python
G
guosheng 已提交
4494

4495
            data = fluid.layers.data(
4496
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4497
            reshaped = fluid.layers.reshape(
4498
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4499 4500 4501 4502
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4503 4504 4505 4506 4507
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4524
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4525
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4526 4527
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4528
        inputs=inputs,
D
dzhwinter 已提交
4529 4530
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4531

D
dzhwinter 已提交
4532
    return helper.append_activation(out)
4533 4534


Y
yangyaming 已提交
4535
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4536
    """
Y
Yibing Liu 已提交
4537
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4538 4539 4540 4541
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4542
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4543 4544 4545 4546 4547 4548

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4549
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4550 4551 4552
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4553
            target_lod: [4, 2]
Y
yangyaming 已提交
4554 4555

            then we get a 1-level LoDTensor:
4556
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4557 4558 4559 4560 4561 4562
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4563
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4564 4565 4566 4567
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4568
                y.data = [[2, 4]]
Y
yangyaming 已提交
4569 4570 4571
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4572
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4573 4574 4575 4576 4577 4578
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4579
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4580 4581 4582 4583
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4584
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4585 4586 4587 4588
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4589
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4590 4591 4592 4593 4594
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4595
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4596
                           from :attr:`y`.
Y
yangyaming 已提交
4597
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4598
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4599 4600

    Returns:
Y
Yibing Liu 已提交
4601
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4602 4603

    Raises:
Y
Yibing Liu 已提交
4604
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4640
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4669 4670
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4698 4699 4700 4701


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4702
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4703
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4704

G
guosheng 已提交
4705 4706 4707 4708
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4731
                         The length of :attr:paddings must be
G
guosheng 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4742

G
guosheng 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4757 4758 4759 4760 4761 4762 4763 4764 4765


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4766 4767
    called label-smoothing regularization (LSR).

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4791
                              be :math:`(1, class\_num)`.
4792 4793
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4794
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4822 4823


Y
yi.wu 已提交
4824
@templatedoc()
4825 4826
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4827
    ${comment}
4828 4829

    Args:
Y
yi.wu 已提交
4830 4831
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4832 4833 4834
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4835 4836

    Returns:
Y
update  
yi.wu 已提交
4837
        Variable: ${out_comment}.
4838 4839

    Examples:
4840 4841
        .. code-block:: python

4842
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4888 4889
        .. code-block:: python

W
whs 已提交
4890 4891 4892 4893
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4894
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4895 4896 4897 4898 4899 4900
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4901 4902


4903 4904 4905 4906 4907
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4908
    """
Q
qiaolongfei 已提交
4909
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4910

4911
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4912 4913 4914
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4915

4916
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4917

4918
    Args:
4919
        input (Variable): The input tensor of image resize layer,
4920 4921
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4922
        out_shape(list|tuple|Variable|None): Output shape of image resize
4923 4924
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4925
        scale(float|None): The multiplier for the input height or width.
4926 4927 4928
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4929 4930
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4931 4932
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4933 4934

    Returns:
Q
update  
qiaolongfei 已提交
4935 4936
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4937

4938 4939 4940
    Examples:
        .. code-block:: python

4941
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4942
    """
4943 4944 4945 4946
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4947 4948
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4949 4950
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4951 4952 4953 4954

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4955 4956 4957
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4958
    if out_shape is not None:
B
baiyf 已提交
4959 4960 4961
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4962 4963 4964 4965 4966 4967
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4968 4969 4970 4971
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4972 4973
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4974
        type=resample_methods[resample],
4975
        inputs=inputs,
4976 4977 4978 4979
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4980 4981


Y
yuyang18 已提交
4982
@templatedoc(op_type="bilinear_interp")
4983 4984
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4985 4986 4987 4988 4989 4990
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4991

Y
yuyang18 已提交
4992 4993 4994 4995 4996 4997 4998 4999
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5000 5001 5002 5003 5004 5005 5006
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5007 5008 5009
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5010 5011 5012 5013 5014 5015 5016
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5017
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5018

5019
    Returns:
Q
update  
qiaolongfei 已提交
5020
        Variable: The output is a 4-D tensor of the shape
5021
        (num_batches, channls, out_h, out_w).
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5032 5033 5034
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5035 5036 5037
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5038 5039
def gather(input, index):
    """
Q
qiaolongfei 已提交
5040 5041
    **Gather Layer**

5042
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5043 5044 5045 5046
    of X indexed by `index` and concatenate them together.

    .. math::

5047
        Out = X[Index]
W
whs 已提交
5048 5049 5050 5051 5052 5053 5054


    .. code-block:: text


                Given:

5055 5056
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5067
        input (Variable): The source input with rank>=1.
W
whs 已提交
5068 5069 5070 5071 5072 5073
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5074

W
whs 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5103

5104 5105 5106
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5107
    """
F
stash  
fengjiayi 已提交
5108
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5109
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5110
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5111 5112
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5113
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5114
    if isinstance(seed, int):
F
fengjiayi 已提交
5115 5116 5117 5118 5119
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5120 5121 5122 5123
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5124
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5125 5126
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5127 5128
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5129
    return out
W
whs 已提交
5130 5131


5132
def log(x, name=None):
W
wanghaoshuang 已提交
5133 5134 5135 5136 5137
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5138
        Out = \\ln(x)
W
wanghaoshuang 已提交
5139 5140

    Args:
5141
        x (Variable): Input tensor.
5142 5143
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5144 5145 5146 5147 5148 5149 5150 5151

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5152
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5153 5154
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5155
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5156
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5157
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5158 5159 5160
    return out


5161
def relu(x, name=None):
W
wanghaoshuang 已提交
5162 5163
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5164
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5165 5166 5167 5168
    the tensor elementwise.

    .. math::

5169
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5170 5171

    Args:
5172
        x (Variable): The input tensor.
5173 5174
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5175 5176 5177 5178 5179 5180 5181 5182

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5183
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5184 5185
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5186
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5187
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5188
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5189
    return out
5190 5191


W
whs 已提交
5192 5193 5194
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5195 5196 5197 5198
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5199
    .. math::
5200 5201

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5202

5203
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5204 5205 5206 5207 5208
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5209
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5210
                           Its shape should be the same as input.
5211
        num_classes (int): The possible number of labels.
W
whs 已提交
5212 5213 5214 5215

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5216
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5217 5218 5219 5220

    Examples:

        .. code-block:: python
5221

W
whs 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5231 5232
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5233
        outputs={
W
whs 已提交
5234 5235 5236
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5237 5238 5239
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5348

5349 5350
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5351

5352 5353 5354 5355
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5356

5357 5358 5359 5360 5361
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5362 5363 5364

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5409 5410


J
jerrywgz 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5477

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5488 5489
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5505
        ValueError: If axis is not in range [0, rank(x)].
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out