nn.py 200.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
15
All layers just related to the neural network.
16 17
"""

18 19
from __future__ import print_function

20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30 31

__all__ = [
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
56 57 58 59 60 61
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
62
    'reduce_prod',
63 64 65 66
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
67 68
    'ctc_greedy_decoder',
    'edit_distance',
69 70
    'l2_normalize',
    'matmul',
71
    'topk',
72 73
    'warpctc',
    'sequence_reshape',
74
    'transpose',
75
    'im2sequence',
76
    'nce',
W
weixing02 已提交
77
    'hsigmoid',
Q
Qiao Longfei 已提交
78
    'beam_search',
79
    'row_conv',
80
    'multiplex',
81
    'layer_norm',
82 83
    'softmax_with_cross_entropy',
    'smooth_l1',
84
    'one_hot',
Y
Yu Yang 已提交
85
    'autoincreased_step_counter',
86
    'reshape',
Y
yangyaming 已提交
87
    'lod_reset',
D
dragonwarrior 已提交
88
    'lrn',
89
    'pad',
90
    'label_smooth',
91
    'roi_pool',
W
whs 已提交
92
    'dice_loss',
F
fengjiayi 已提交
93 94
    'image_resize',
    'image_resize_short',
95
    'resize_bilinear',
96
    'gather',
97
    'scatter',
98
    'random_crop',
Y
yuyang18 已提交
99 100 101
    'mean_iou',
    'relu',
    'log',
102
    'crop',
103
    'rank_loss',
104
    'prelu',
105
    'flatten',
S
sneaxiy 已提交
106
    'stack',
107 108 109 110 111 112 113 114
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
115
       use_mkldnn=False,
116
       act=None,
117
       is_test=False,
118
       name=None):
119
    """
120
    **Fully Connected Layer**
121

122 123 124 125 126 127 128 129
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
130
    to the output as well.
C
caoying03 已提交
131

C
caoying03 已提交
132
    This process can be formulated as follows:
133 134 135

    .. math::

136
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
137 138 139

    In the above equation:

140 141 142 143
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
144
    * :math:`Act`: The activation function.
C
caoying03 已提交
145
    * :math:`Out`: The output tensor.
146 147

    Args:
R
ranqiu 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
163 164
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
165
        act (str, default None): Activation to be applied to the output of this layer.
166
        is_test(bool): A flag indicating whether execution is in test phase.
167 168
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
169
        name (str, default None): The name of this layer.
170

171
    Returns:
F
fengjiayi 已提交
172
        Variable: The transformation result.
173 174

    Raises:
175
        ValueError: If rank of the input tensor is less than 2.
176 177 178 179

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
180
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
181
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
182
    """
C
caoying03 已提交
183

C
caoying03 已提交
184
    helper = LayerHelper("fc", **locals())
185 186 187 188

    dtype = helper.input_dtype()

    mul_results = []
189 190
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
191 192 193
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
194

195
        w = helper.create_parameter(
196 197
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
198
        helper.append_op(
199 200 201
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
202
            outputs={"Out": tmp},
M
mozga-intel 已提交
203 204
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
205 206 207 208
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
209
    else:
210 211
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
212 213 214 215
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
216 217 218 219
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
220 221


222 223 224
def embedding(input,
              size,
              is_sparse=False,
225
              is_distributed=False,
226 227 228
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
229
    """
230 231
    **Embedding Layer**

232
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
233 234
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
235 236 237

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
238 239

    Args:
240 241 242 243 244
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
245
        is_distributed(bool): Whether to run lookup table from remote parameter server.
246 247
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
248
            with zeros whenever lookup encounters it in :attr:`input`. If
249
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
250 251
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
252
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
253

254 255 256
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
257

258 259
    Examples:
        .. code-block:: python
260

C
chengduoZH 已提交
261
          dict_size = len(dataset.ids)
262
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
263
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
264 265 266 267 268 269
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
270 271
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
272 273 274 275 276
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
277 278 279 280 281
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
282 283 284
    return tmp


Y
yi.wu 已提交
285
@templatedoc(op_type="lstm")
286 287
def dynamic_lstm(input,
                 size,
288 289
                 h_0=None,
                 c_0=None,
290 291 292 293 294 295 296
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
297 298
                 dtype='float32',
                 name=None):
299
    """
Y
yi.wu 已提交
300
    ${comment}
301 302

    Args:
Y
yi.wu 已提交
303 304
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
305 306 307 308 309 310 311
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

312
        param_attr(ParamAttr|None): The parameter attribute for the learnable
313
                               hidden-hidden weights.
314 315 316

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
317 318
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
319
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
320 321 322
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
323

324
                              1. `use_peepholes = False`
Y
yi.wu 已提交
325 326
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
327
                              2. `use_peepholes = True`
Y
yi.wu 已提交
328
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
329
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
330
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
331 332 333 334 335 336 337 338
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
339 340

    Returns:
341 342
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
343

344
    Examples:
345 346
        .. code-block:: python

347 348
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
349
                                           act=None, bias_attr=None)
350 351
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
352
    """
353

354
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
355
    size = size // 4
356 357 358 359 360 361 362 363 364 365 366 367
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
368 369 370 371 372 373 374 375 376 377
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
378 379 380

    helper.append_op(
        type='lstm',
381
        inputs=inputs,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


398 399 400 401 402 403 404 405 406 407 408
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
409 410
                  dtype='float32',
                  name=None):
411 412 413
    """
    **Dynamic LSTMP Layer**

414 415 416 417 418 419
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
420 421 422 423 424

    The formula is as follows:

    .. math::

425
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
426

427
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
428

429
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
430

431
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
432

433
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
434

435
        h_t & = o_t \odot act_h(c_t)
436

437
        r_t & = \overline{act_h}(W_{rh}h_t)
438

439 440 441 442 443 444
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
445
          we use vectors to reprenset these diagonal weight matrices.
446
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
447
          bias vector).
448 449 450
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
451
          the same size as the cell output activation vector :math:`h`.
452
    * :math:`h`: The hidden state.
453
    * :math:`r`: The recurrent projection of the hidden state.
454 455
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
456
    * :math:`\odot`: The element-wise product of the vectors.
457
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
458
          activation functions and `tanh` is usually used for them.
459 460
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
461 462 463 464

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
465

466 467 468 469 470 471 472 473 474 475 476 477
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
478
        param_attr(ParamAttr|None): The parameter attribute for the learnable
479 480
                               hidden-hidden weight and projection weight.

481 482
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
483 484
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
485 486
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
487 488
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
489 490 491 492 493 494
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
495
                                - The shape is (1 x 4D).
496 497 498
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
499
                                - The shape is (1 x 7D).
500 501 502 503 504 505 506 507 508
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
509
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
510 511
                              default "tanh".
        proj_activation(str): The activation for projection output.
512
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
513 514
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
515 516
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
517 518

    Returns:
519 520 521 522
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
523 524

    Examples:
525

526 527
        .. code-block:: python

528 529 530 531
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
532
            hidden_dim, proj_dim = 512, 256
533
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
534
                                     act=None, bias_attr=None)
535 536 537
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
538 539 540 541
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
542
    """
543

544
    helper = LayerHelper('lstmp', **locals())
545
    size = size // 4
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
590 591 592 593 594 595 596 597 598
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
599
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
600

601
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
602
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
603

G
guosheng 已提交
604 605 606 607 608 609 610 611 612
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
613

G
guosheng 已提交
614
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
615

G
guosheng 已提交
616
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
617 618
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
619 620 621 622
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
623
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
624 625

    Args:
626 627
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
628
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
629
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
630 631
            is the hidden size.
        size(int): The dimension of the gru cell.
632
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
633 634
            hidden-hidden weight matrix. Note:

635
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
636
              :math:`D` is the hidden size.
637
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
638
              The first part are weights of the update gate and reset gate with
639
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
640
              candidate hidden state with shape :math:`(D \\times D)`.
641
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
642
            hidden-hidden bias.
643
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
644 645 646
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
647
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
648
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
649 650 651 652
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
653 654

    Returns:
655
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
656
            and sequence length is the same with the input.
657

G
guosheng 已提交
658
    Examples:
659

G
guosheng 已提交
660 661
        .. code-block:: python

662 663 664 665
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
666
            hidden_dim = 512
667
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
668 669 670 671 672 673 674 675 676 677
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
678
    batch_size = input.shape[0]
G
guosheng 已提交
679 680 681
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
682 683 684
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


708 709 710
def gru_unit(input,
             hidden,
             size,
711 712
             param_attr=None,
             bias_attr=None,
713
             activation='tanh',
714
             gate_activation='sigmoid'):
715
    """
716
    GRU unit layer. The equation of a gru step is:
717

718 719
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
720

721
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
722

723
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
724

725
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
726 727

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
728 729 730
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
731 732
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

733 734
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
735 736 737
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
738 739 740 741 742

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
743 744
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
745 746 747 748
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
749

750 751 752 753 754 755
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
756

757
             # assuming we have x_t_data and prev_hidden of size=10
758
             x_t = fluid.layers.fc(input=x_t_data, size=30)
759 760
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
761 762 763 764 765 766 767 768 769 770 771 772

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
773
    size = size // 3
774 775

    # create weight
776 777
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
778

779 780 781 782
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
783
    # create bias
784
    if helper.bias_attr:
785 786 787
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
788
        inputs['Bias'] = bias
789 790 791

    helper.append_op(
        type='gru_unit',
792
        inputs=inputs,
793 794 795 796 797 798
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
799 800
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
801 802 803 804 805
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
806
@templatedoc()
807
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
808 809 810 811 812 813 814
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
815
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
816 817 818 819
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
820 821 822
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
823 824

    """
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
850
@templatedoc()
851
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
852 853 854 855 856
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
857

Y
yuyang18 已提交
858
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
859

Y
yuyang18 已提交
860 861 862
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
863
        Variable: ${viterbi_path_comment}
864

Y
yi.wu 已提交
865 866 867 868 869
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
870
    """
871 872 873 874 875 876 877 878 879 880 881 882 883
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
884
@templatedoc()
F
fengjiayi 已提交
885
def cos_sim(X, Y):
886
    """
Y
yi.wu 已提交
887 888 889
    ${comment}

    Args:
890 891
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
892

Y
yi.wu 已提交
893
    Returns:
894
        Variable: the output of cosine(X, Y).
895
    """
F
fengjiayi 已提交
896
    helper = LayerHelper('cos_sim', **locals())
897 898 899 900 901 902 903 904 905 906 907 908 909
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


910
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
911 912 913 914 915
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
916
    training. The dropout operator randomly sets (according to the given dropout
917 918 919 920
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
921 922
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
923 924 925 926 927 928 929
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
930 931

    Returns:
932
        Variable: A tensor variable is the shape with `x`.
933 934

    Examples:
935

936 937
        .. code-block:: python

938 939
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
940 941
    """

F
fengjiayi 已提交
942
    helper = LayerHelper('dropout', **locals())
943 944
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
945 946 947 948

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

949 950 951 952 953
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
954 955 956 957 958 959
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
960 961 962
    return out


F
fengjiayi 已提交
963
def cross_entropy(input, label, soft_label=False):
964
    """
965 966
    **Cross Entropy Layer**

967 968 969
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
970 971

    1) One-hot cross-entropy:
F
fengjiayi 已提交
972
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
973

974
        .. math::
975

976 977 978
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
979 980
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
981 982 983 984 985

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

986
       Please make sure that in this case the summation of each row of `label`
987 988 989
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
990 991
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
992
         to a one-hot cross-entropy with one-hot label representation.
993

994
    Args:
995
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
996 997 998 999
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
1000
        label (Variable|list): the ground truth which is a 2-D tensor. When
1001 1002 1003 1004
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1005
        soft_label (bool): a flag indicating whether to
1006 1007
                                           interpretate the given labels as soft
                                           labels, default `False`.
1008 1009 1010 1011 1012

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1013 1014 1015 1016 1017
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
1018 1019 1020 1021 1022 1023

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
1024
    """
F
fengjiayi 已提交
1025
    helper = LayerHelper('cross_entropy', **locals())
1026 1027 1028 1029 1030 1031
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1032
        attrs={"soft_label": soft_label})
1033 1034 1035
    return out


F
fengjiayi 已提交
1036
def square_error_cost(input, label):
1037
    """
1038 1039
    **Square error cost layer**

1040 1041
    This layer accepts input predictions and target label and returns the
    squared error cost.
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1056 1057
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1058 1059

    Returns:
1060
        Variable: The tensor variable storing the element-wise squared error \
1061
                  difference of input and label.
1062 1063 1064 1065 1066 1067 1068 1069

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

1070
    """
F
fengjiayi 已提交
1071
    helper = LayerHelper('square_error_cost', **locals())
1072 1073 1074 1075 1076 1077 1078 1079 1080
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1081 1082
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
1083 1084 1085
    return square_out


Y
yi.wu 已提交
1086
@templatedoc()
1087 1088 1089 1090
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1091
               excluded_chunk_types=None):
1092
    """
Y
yi.wu 已提交
1093
    **Chunk Evaluator**
Y
yi.wu 已提交
1094

1095
    This function computes and outputs the precision, recall and
1096
    F1-score of chunk detection.
Y
yi.wu 已提交
1097

Y
yi.wu 已提交
1098 1099 1100 1101 1102 1103 1104 1105
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1106

Y
yi.wu 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1132

Y
yi.wu 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1157
    Args:
1158 1159 1160 1161 1162
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1163

Y
yi.wu 已提交
1164
    Returns:
Y
update  
yi.wu 已提交
1165 1166 1167
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1168

Y
yi.wu 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
1181
    """
F
fengjiayi 已提交
1182
    helper = LayerHelper("chunk_eval", **locals())
1183 1184 1185 1186 1187

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1188 1189 1190
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
1191 1192 1193 1194 1195 1196 1197 1198

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1199 1200 1201 1202
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
1203 1204 1205
        },
        attrs={
            "num_chunk_types": num_chunk_types,
1206 1207
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
1208
        })
1209 1210
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
1211 1212


1213
@templatedoc()
1214 1215 1216 1217 1218 1219 1220
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1221
                  act=None):
1222 1223 1224 1225
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1236

1237 1238
    Returns:
        Variable: output of sequence_conv
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
1257
            'contextStart': -int(filter_size // 2),
1258 1259 1260 1261 1262 1263
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1264
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1265 1266 1267
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1268
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1311
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1312
    """
1313
    The input of the softmax operator is a tensor of any rank. The output tensor
1314
    has the same shape as the input.
Q
qiaolongfei 已提交
1315

1316 1317 1318 1319 1320 1321
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
1322
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1323 1324 1325 1326 1327 1328 1329

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

1330
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1365 1366 1367
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1368 1369
           stride=1,
           padding=0,
1370
           dilation=1,
1371 1372 1373
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1374
           use_cudnn=True,
1375
           use_mkldnn=False,
1376 1377
           act=None,
           name=None):
1378
    """
C
chengduoZH 已提交
1379
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1380 1381
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1382
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1383 1384 1385 1386 1387 1388 1389
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1390 1391 1392
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1393

1394
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1395

C
chengduoZH 已提交
1396 1397
    .. math::

C
refine  
chengduoZH 已提交
1398
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1399

T
tensor-tang 已提交
1400
    Where:
C
chengduoZH 已提交
1401

1402 1403 1404 1405 1406
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1407
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1408 1409 1410

    Example:

1411 1412
        - Input:

W
weixing02 已提交
1413
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1414

W
weixing02 已提交
1415
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1416

1417
        - Output:
T
tensor-tang 已提交
1418

W
weixing02 已提交
1419
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1420

C
chengduoZH 已提交
1421
        Where
1422 1423

        .. math::
C
chengduoZH 已提交
1424

W
weixing02 已提交
1425 1426
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1427 1428

    Args:
1429
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1430
        num_filters(int): The number of filter. It is as same as the output
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1453 1454
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1455 1456 1457
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1458 1459

    Returns:
1460
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1461 1462
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1463
    Raises:
1464 1465
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1466

C
chengduoZH 已提交
1467 1468 1469
    Examples:
        .. code-block:: python

1470 1471
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
1472 1473 1474
    """

    num_channels = input.shape[1]
1475 1476

    l_type = 'conv2d'
1477 1478
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1479
        l_type = 'depthwise_conv2d'
1480 1481 1482 1483

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

1484 1485 1486 1487 1488
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
1489
        num_filter_channels = num_channels // groups
1490

C
chengduoZH 已提交
1491 1492 1493
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1494
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1495

C
chengduoZH 已提交
1496 1497
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
1498 1499

    input_shape = input.shape
M
minqiyang 已提交
1500
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1515
        type=l_type,
1516 1517 1518 1519 1520
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1521 1522 1523
        attrs={
            'strides': stride,
            'paddings': padding,
1524
            'dilations': dilation,
C
chengduoZH 已提交
1525
            'groups': groups,
1526 1527
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1528
        })
1529 1530 1531 1532 1533 1534

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1553 1554 1555 1556 1557 1558
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1568 1569
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1570 1571 1572
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1573
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1599
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1600 1601
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1602
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1603 1604
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1605
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1606 1607
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1608
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1635 1636
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
1651
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1692
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1693 1694 1695 1696

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1697
def sequence_pool(input, pool_type):
1698
    """
1699 1700 1701
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1713
         x.lod = [[2, 3, 2]]
1714 1715 1716 1717 1718
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1719
         with condition len(x.lod[-1]) == out.dims[0]
1720 1721 1722 1723 1724 1725 1726

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1727 1728
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1729

1730 1731
    Args:
        input(variable): The input variable which is a LoDTensor.
1732
        pool_type (string): The pooling type of sequence_pool.
1733 1734 1735 1736 1737 1738 1739 1740
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1741

1742
             x = fluid.layers.data(name='x', shape=[7, 1],
1743 1744 1745 1746 1747
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1748 1749
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
1750
    """
F
fengjiayi 已提交
1751
    helper = LayerHelper('sequence_pool', **locals())
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

1763 1764 1765 1766 1767
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

1768 1769 1770
    return pool_out


F
fengjiayi 已提交
1771
def sequence_first_step(input):
1772
    """
L
Luo Tao 已提交
1773
    This function gets the first step of sequence.
1774 1775 1776 1777

    .. code-block:: text

       x is a 1-level LoDTensor:
1778
         x.lod = [[2, 3, 2]]
1779 1780 1781 1782 1783
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1784
         with condition len(x.lod[-1]) == out.dims[0]
1785
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1796

1797
             x = fluid.layers.data(name='x', shape=[7, 1],
1798 1799 1800
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1801 1802 1803
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1804
def sequence_last_step(input):
1805
    """
L
Luo Tao 已提交
1806
    This function gets the last step of sequence.
1807 1808 1809 1810

    .. code-block:: text

       x is a 1-level LoDTensor:
1811
         x.lod = [[2, 3, 2]]
1812 1813 1814 1815 1816
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1817
         with condition len(x.lod[-1]) == out.dims[0]
1818
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1829

1830
             x = fluid.layers.data(name='x', shape=[7, 1],
1831 1832 1833
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1834 1835 1836
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1837
@templatedoc()
1838
def pool2d(input,
C
chengduoZH 已提交
1839 1840
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1841 1842
           pool_stride=1,
           pool_padding=0,
1843
           global_pooling=False,
C
chengduoZH 已提交
1844
           use_cudnn=True,
1845
           ceil_mode=False,
1846
           use_mkldnn=False,
1847
           name=None):
1848
    """
F
fengjiayi 已提交
1849
    ${comment}
1850 1851

    Args:
1852 1853 1854
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1855
                          feature, and W is the width of the feature.
1856
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1857
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1858
        pool_type: ${pooling_type_comment}
1859 1860
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1861 1862 1863 1864
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1865
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1866 1867
                        layer will be named automatically.

1868
    Returns:
F
fengjiayi 已提交
1869
        Variable: The pooling result.
F
fengjiayi 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1883 1884 1885 1886
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1887
                            global_pooling=False)
1888 1889 1890 1891 1892
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1893

C
chengduoZH 已提交
1894 1895 1896 1897 1898
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1899 1900 1901 1902
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1903 1904
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
1905

C
Add doc  
chengduoZH 已提交
1906
    l_type = 'pool2d'
1907 1908

    helper = LayerHelper(l_type, **locals())
1909 1910 1911 1912
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
1942
    pooling configurations mentioned in input parameters.
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1956

1957
    Returns:
1958
        Variable: output of pool3d layer.
1959 1960 1961 1962 1963
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1964

C
chengduoZH 已提交
1965 1966 1967 1968 1969
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1970 1971 1972
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1973

C
chengduoZH 已提交
1974 1975
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
1976

1977 1978
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
1979 1980 1981 1982
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1983
        type=l_type,
1984 1985 1986 1987 1988 1989 1990
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1991
            "paddings": pool_padding,
1992
            "use_cudnn": use_cudnn,
1993 1994
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
2007
               data_layout='NCHW',
Y
Yang Yang 已提交
2008
               in_place=False,
2009
               use_mkldnn=False,
2010 2011
               name=None,
               moving_mean_name=None,
2012
               moving_variance_name=None,
2013 2014
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
2015
    """
Q
qiaolongfei 已提交
2016 2017 2018 2019
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2020

Q
qiaolongfei 已提交
2021
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2022

Q
qiaolongfei 已提交
2023 2024
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2025 2026 2027
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2040 2041

    Args:
Q
qiaolongfei 已提交
2042
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2043 2044 2045 2046
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2047 2048 2049
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2050
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2051 2052 2053 2054 2055
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2056
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2057
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2058 2059

    Returns:
Q
qiaolongfei 已提交
2060
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2061 2062 2063 2064 2065 2066 2067

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2091
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2092

2093 2094
    mean = helper.create_parameter(
        attr=ParamAttr(
2095 2096 2097
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2098
            do_model_average=do_model_average_for_mean_and_var),
2099
        shape=param_shape,
2100 2101 2102 2103 2104 2105 2106
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
2107
            trainable=False,
W
wanghaoshuang 已提交
2108
            do_model_average=do_model_average_for_mean_and_var),
2109
        shape=param_shape,
2110 2111
        dtype=input.dtype)
    variance.stop_gradient = True
2112 2113 2114 2115 2116 2117

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
2118 2119
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
2120

2121
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2139 2140 2141 2142
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2143 2144
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2145
        })
2146 2147 2148 2149

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2150
@templatedoc()
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2161
    ${comment}
2162 2163 2164

    The formula is as follows:

Y
yuyang18 已提交
2165
    ..  math::
2166 2167 2168 2169 2170 2171 2172

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2173 2174 2175 2176 2177 2178 2179 2180
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2181

2182 2183
    Args:
        input(Variable): The input tensor variable.
2184
        scale(bool): Whether to learn the adaptive gain :math:`g` after
2185
            normalization.
2186
        shift(bool): Whether to learn the adaptive bias :math:`b` after
2187
            normalization.
2188
        begin_norm_axis(bool): The normalization will be performed along
2189
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2190
        epsilon(float): The small value added to the variance to prevent
2191 2192 2193 2194 2195 2196
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2197
        name (str): The name of this layer. It is optional.
2198 2199

    Returns:
Y
yuyang18 已提交
2200
        ${y_comment}
2201 2202 2203

    Examples:

Y
yuyang18 已提交
2204 2205 2206
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
2222
    if shift:
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


2247 2248 2249 2250
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2251 2252 2253
                     padding=0,
                     stride=1,
                     dilation=1,
2254
                     groups=None,
2255
                     param_attr=None,
2256
                     bias_attr=None,
C
chengduoZH 已提交
2257
                     use_cudnn=True,
2258
                     act=None,
2259
                     name=None):
2260
    """
2261 2262 2263 2264 2265 2266 2267 2268
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2269 2270
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2271 2272 2273
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2274 2275 2276 2277 2278

    For each input :math:`X`, the equation is:

    .. math::

2279
        Out = \sigma (W \\ast X + b)
2280

2281
    Where:
2282 2283 2284

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2285 2286 2287 2288
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
2289

2290 2291 2292 2293
    Example:

        - Input:

2294
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2295

2296
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2297 2298 2299

        - Output:

2300
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2301 2302

        Where
2303

2304 2305 2306 2307
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
2308 2309

    Args:
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
2343 2344

    Returns:
2345
        Variable: The tensor variable storing the convolution transpose result.
2346 2347

    Raises:
2348 2349
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2350 2351 2352 2353

    Examples:
       .. code-block:: python

2354 2355
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
2356
    """
2357 2358 2359 2360 2361 2362 2363 2364 2365

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
2366 2367 2368
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2369 2370 2371
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
2372

C
chengduoZH 已提交
2373 2374
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
2375

2376 2377 2378 2379 2380
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
2381

2382 2383
        h_in = input.shape[2]
        w_in = input.shape[3]
2384

C
chengduoZH 已提交
2385
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
2386
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2387
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
2388
                         padding[1] - 1) // dilation[1] + 1
2389
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2390 2391 2392
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2393

2394
    groups = 1 if groups is None else groups
2395
    filter_shape = [input_channel, num_filters // groups] + filter_size
2396 2397 2398
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2399
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
2400
    helper.append_op(
2401
        type=op_type,
2402 2403
        inputs={'Input': [input],
                'Filter': [img_filter]},
2404
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2405
        attrs={
2406 2407 2408 2409 2410
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
2411 2412
        })

2413 2414 2415
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
2416 2417


2418
def conv3d_transpose(input,
2419 2420 2421
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2422 2423 2424
                     padding=0,
                     stride=1,
                     dilation=1,
2425
                     groups=None,
2426
                     param_attr=None,
2427
                     bias_attr=None,
C
chengduoZH 已提交
2428
                     use_cudnn=True,
2429
                     act=None,
2430
                     name=None):
2431
    """
2432
    **Convlution3D transpose layer**
2433

2434
    The convolution3D transpose layer calculates the output based on the input,
2435
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2436 2437 2438 2439 2440 2441
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2442 2443 2444
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2445 2446 2447 2448 2449

    For each input :math:`X`, the equation is:

    .. math::

2450
        Out = \sigma (W \\ast X + b)
2451 2452 2453

    In the above equation:

2454 2455
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2456 2457 2458 2459
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
2460

2461 2462 2463 2464
    Example:

        - Input:

2465
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2466

2467
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2468 2469 2470

        - Output:

2471
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2472 2473

        Where
2474

2475 2476
        .. math::

2477 2478 2479
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
2480 2481

    Args:
2482
        input(Variable): The input image with [N, C, D, H, W] format.
2483 2484 2485
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2486
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2487 2488
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2489
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2490 2491 2492
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2493 2494
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2495
        stride(int|tuple): The stride size. If stride is a tuple, it must
2496 2497
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2498
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2499 2500 2501
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2502 2503 2504 2505 2506
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2507 2508 2509
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2510 2511 2512 2513 2514
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
2515 2516

    Returns:
2517
        Variable: The tensor variable storing the convolution transpose result.
2518 2519

    Raises:
2520 2521
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2522 2523 2524 2525

    Examples:
       .. code-block:: python

2526 2527
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
2528
    """
2529 2530
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
2531
    if not isinstance(input, Variable):
2532
        raise TypeError("Input of conv3d_transpose must be Variable")
2533 2534
    input_channel = input.shape[1]

2535 2536 2537
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2538

C
chengduoZH 已提交
2539 2540 2541
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

2542 2543 2544 2545 2546 2547
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2548 2549 2550
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2551

2552
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
2553
                         padding[0] - 1) // dilation[0] + 1
2554
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
2555
                         padding[1] - 1) // dilation[1] + 1
2556
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
2557
                         padding[2] - 1) // dilation[2] + 1
2558
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2559
    else:
2560 2561
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
2562

2563
    groups = 1 if groups is None else groups
2564
    filter_shape = [input_channel, num_filters // groups] + filter_size
2565 2566 2567
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2568
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
2569
    helper.append_op(
2570
        type=l_type,
2571 2572
        inputs={'Input': [input],
                'Filter': [img_filter]},
2573
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2574 2575 2576 2577
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2578
            'groups': groups,
C
chengduoZH 已提交
2579 2580
            'use_cudnn': use_cudnn
        })
2581

2582 2583
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
2584
    return out
2585 2586


Y
yangyaming 已提交
2587
def sequence_expand(x, y, ref_level=-1, name=None):
2588
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2589 2590 2591 2592
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2593 2594 2595 2596 2597

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2598
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2599
                x.data = [[a], [b], [c], [d]]
2600 2601 2602
                x.dims = [4, 1]

            y is a LoDTensor:
2603 2604
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2605

Y
yangyaming 已提交
2606
            ref_level: 0
2607

Y
yangyaming 已提交
2608
            then output is a 1-level LoDTensor:
2609
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2610
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2611 2612 2613 2614
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2615
                x.data = [[a], [b], [c]]
2616 2617 2618
                x.dims = [3, 1]

            y is a LoDTensor:
2619
                y.lod = [[2, 0, 3]]
2620

Y
yangyaming 已提交
2621
            ref_level: -1
2622

Y
yangyaming 已提交
2623 2624 2625
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2626 2627 2628
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2629 2630
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
2631
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2632
                        will be named automatically.
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2643
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2644
    """
2645
    helper = LayerHelper('sequence_expand', input=x, **locals())
2646 2647 2648
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2649 2650 2651 2652 2653
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2654
    return tmp
2655 2656


2657 2658 2659 2660 2661 2662 2663 2664 2665
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2666 2667
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
2668 2669 2670

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2671 2672

    This layer does the search in beams for one time step. Specifically, it
2673 2674 2675 2676 2677 2678
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2679

2680 2681 2682 2683 2684 2685 2686 2687
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
2688

2689
    Args:
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2715

2716
    Returns:
2717 2718
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
2719 2720 2721 2722

    Examples:
        .. code-block:: python

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2751
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2769 2770 2771 2772 2773 2774 2775
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
2786

2787 2788 2789 2790 2791 2792
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


2819 2820 2821 2822
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
2823
              param_attr=None,
2824 2825
              bias_attr=None,
              name=None):
2826 2827 2828 2829
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2830
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
2831

2832
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
2833

2834
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
2835

2836
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
2837 2838 2839

            h_t & = o_t tanh(c_t)

2840 2841 2842 2843 2844 2845
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
2846 2847 2848

        .. math::

2849
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
2850 2851 2852 2853 2854 2855 2856 2857

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

2858
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
2859 2860

    Args:
2861 2862 2863 2864 2865 2866
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
2867
        forget_bias (float): The forget bias of lstm unit.
2868 2869
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
2870 2871
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
2872 2873
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2874 2875

    Returns:
2876
        tuple: The hidden value and cell value of lstm unit.
2877 2878

    Raises:
2879 2880 2881 2882
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
2883 2884 2885 2886 2887 2888

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2889
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
2890
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
2891
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2908
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2909 2910 2911 2912
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
2913 2914
                         "cell_t_prev must be the same.")

2915 2916 2917
    if bias_attr is None:
        bias_attr = ParamAttr()

2918
    size = cell_t_prev.shape[1]
2919
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
2920 2921
    fc_out = fc(input=concat_out,
                size=4 * size,
2922
                param_attr=param_attr,
2923
                bias_attr=bias_attr)
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

2936
    return h, c
2937 2938


2939
def reduce_sum(input, dim=None, keep_dim=False, name=None):
2940
    """
2941
    Computes the sum of tensor elements over the given dimension.
2942 2943 2944

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2945
        dim (list|int|None): The dimensions along which the sum is performed. If
2946 2947
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2948 2949
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2950
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
2951
            output Tensor. The result tensor will have one fewer dimension
2952
            than the :attr:`input` unless :attr:`keep_dim` is true.
2953 2954
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2955 2956 2957

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2958

2959 2960 2961 2962 2963 2964
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
2965
            # Each example is followed by the corresponding output tensor.
2966 2967 2968 2969
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2970 2971 2972 2973

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
2974
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2975 2976 2977
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

2978 2979 2980
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2981 2982
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2983 2984 2985 2986 2987
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2988
            'dim': dim if dim != None else [0],
2989 2990 2991 2992
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2993 2994


2995
def reduce_mean(input, dim=None, keep_dim=False, name=None):
2996
    """
2997
    Computes the mean of the input tensor's elements along the given dimension.
2998 2999 3000

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
3001 3002 3003
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
3004
            must be in the range :math:`[-rank(input), rank(input))`. If
3005
            :math:`dim[i] < 0`, the dimension to reduce is
3006
            :math:`rank(input) + dim[i]`.
3007 3008
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3009
            than the :attr:`input` unless :attr:`keep_dim` is true.
3010
        name(str|None): A name for this layer(optional). If set `None`, the layer
3011
                       will be named automatically.
3012 3013

    Returns:
3014
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3026 3027
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3028 3029 3030 3031 3032 3033 3034

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
3035 3036 3037
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3038 3039
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3040 3041 3042 3043 3044
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3045
            'dim': dim if dim != None else [0],
3046 3047 3048 3049
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3050 3051


3052
def reduce_max(input, dim=None, keep_dim=False, name=None):
3053
    """
3054
    Computes the maximum of tensor elements over the given dimension.
3055 3056 3057

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3058
        dim (list|int|None): The dimension along which the maximum is computed.
3059 3060 3061
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3062
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3063 3064
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3065
            than the :attr:`input` unless :attr:`keep_dim` is true.
3066 3067
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3068 3069 3070

    Returns:
        Variable: The reduced Tensor variable.
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3083 3084 3085 3086 3087 3088 3089

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3090 3091 3092
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3093 3094
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3095 3096 3097 3098 3099
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3100
            'dim': dim if dim != None else [0],
3101 3102 3103 3104 3105 3106
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


3107
def reduce_min(input, dim=None, keep_dim=False, name=None):
3108
    """
3109
    Computes the minimum of tensor elements over the given dimension.
3110 3111 3112

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3113
        dim (list|int|None): The dimensions along which the minimum is computed.
3114 3115 3116
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3117
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3118 3119
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3120
            than the :attr:`input` unless :attr:`keep_dim` is true.
3121 3122
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3123 3124 3125

    Returns:
        Variable: The reduced Tensor variable.
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3138 3139 3140 3141 3142 3143 3144

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3145 3146 3147
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3148 3149
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3150 3151 3152 3153 3154
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3155
            'dim': dim if dim != None else [0],
3156 3157 3158 3159
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3160 3161


3162 3163 3164 3165 3166 3167
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3168
        dim (list|int|None): The dimensions along which the product is performed. If
3169 3170
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3171 3172
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3173 3174 3175
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3176
        name(str|None): A name for this layer(optional). If set None, the
3177
            layer will be named automatically.
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3192
            fluid.layers.reduce_prod(x, dim=1,
3193
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3194 3195 3196 3197 3198 3199 3200

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3201 3202 3203
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3204 3205
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3206 3207 3208 3209 3210
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3211
            'dim': dim if dim != None else [0],
3212 3213 3214 3215 3216 3217
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


3218
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3219
    """
3220
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3221 3222 3223

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
3224 3225 3226 3227 3228
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3229
            :attr:`dim` dimension orderly.
3230
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3231
            dimension to split along is :math:`rank(input) + dim`.
3232 3233
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3234 3235

    Returns:
D
dzhwinter 已提交
3236
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3246 3247
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
3277 3278 3279 3280 3281 3282 3283 3284 3285


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3286
    .. math::
3287 3288

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
3289 3290 3291 3292 3293

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3294
        x(Variable|list): The input tensor to l2_normalize layer.
3295
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3296 3297
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3298
        epsilon(float): The epsilon value is used to avoid division by zero, \
3299
            the defalut value is 1e-10.
3300
        name(str|None): A name for this layer(optional). If set None, the layer \
3301
            will be named automatically.
3302 3303

    Returns:
3304
        Variable: The output tensor variable is the same shape with `x`.
3305 3306

    Examples:
3307

3308 3309
        .. code-block:: python

3310 3311 3312 3313
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
3314 3315
    """

F
fengjiayi 已提交
3316 3317
    if len(x.shape) == 1:
        axis = 0
3318 3319
    helper = LayerHelper("l2_normalize", **locals())

3320 3321
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
3322
    helper.append_op(
3323 3324 3325 3326
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
3327
        attrs={
3328 3329
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
3330 3331
        })
    return out
3332 3333


3334
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
3335
    """
Y
ying 已提交
3336 3337 3338 3339
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
3340

C
chengduoZH 已提交
3341
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3342
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
3343

3344 3345 3346 3347 3348
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3349
      :math:`[1, D]` in transposed form.
3350

C
chengduoZH 已提交
3351
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3352
      performs in the following way.
3353

3354
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3355
      - If either is n-D, it is treated as a stack of matrices residing in the
3356
        last two dimensions and a batched matrix multiply supporting broadcast
3357
        applies on the two tensors.
3358

3359 3360
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3361
    removed after matrix multiplication.
3362 3363 3364

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3365 3366 3367
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3368
        name(str|None): A name for this layer(optional). If set None, the layer
3369
            will be named automatically.
3370 3371

    Returns:
3372
        Variable: The product Tensor variable.
3373

G
guosheng 已提交
3374 3375 3376
    Examples:
        .. code-block:: python

3377
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3378 3379
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3380

3381 3382
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3383

3384 3385
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3386

3387 3388
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3389 3390 3391 3392

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3393 3394
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3395

Y
ying 已提交
3396
            # x: [M], y: [N]
3397
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3398
    """
Y
ying 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3411
            y_shape = y_shape + [1]
Y
ying 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3428
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3429
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3430
    helper.append_op(
3431 3432 3433 3434 3435 3436 3437
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3438 3439


3440
def topk(input, k, name=None):
3441 3442 3443 3444
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3445
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
3446 3447 3448 3449 3450 3451
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

3473 3474 3475
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3476
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3477
                 of input.
3478
        name(str|None): A name for this layer(optional). If set None, the layer
3479
                       will be named automatically.
F
fengjiayi 已提交
3480
                       Default: None
3481 3482

    Returns:
3483 3484 3485
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3486
        within the last dimension of input.
3487

F
fengjiayi 已提交
3488 3489
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
3490 3491 3492 3493 3494 3495 3496

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3497
    if k < 1 or k >= shape[-1]:
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3515
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3516
    """
Y
ying 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3526

Y
ying 已提交
3527
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3528

3529
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3530 3531
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3532
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3533

3534
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3535 3536
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3537

3538 3539 3540
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3541
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3542
                          the length of reference string.
3543
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3544
                                     calculating edit distance.
3545
        name (str): The name of this layer. It is optional.
3546

W
wanghaoshuang 已提交
3547
    Returns:
W
wanghaoshuang 已提交
3548
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3549 3550 3551 3552 3553

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3554
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3555
            cost = fluid.layers.edit_distance(input=x,label=y)
3556
    """
3557
    helper = LayerHelper("edit_distance", **locals())
3558

3559
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3560
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3561 3562 3563 3564 3565 3566 3567
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3568
            attrs={"tokens": ignored_tokens})
3569 3570 3571 3572 3573
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
3574
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3575
            attrs={"tokens": ignored_tokens})
3576 3577
        label = erased_label

3578 3579
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3580
    sequence_num = helper.create_tmp_variable(dtype="int64")
3581 3582 3583 3584
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3585 3586
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3587 3588
        attrs={"normalized": normalized})

3589
    return edit_distance_out, sequence_num
3590 3591 3592 3593 3594


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3595

Y
ying 已提交
3596 3597 3598 3599
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3617
        input.lod = [[4, 4]]
3618 3619 3620 3621 3622 3623 3624

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3625
        output.lod = [[2, 1]]
3626 3627 3628

    Args:

Y
ying 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3638
        name (str): The name of this layer. It is optional.
3639 3640

    Returns:
3641
        Variable: CTC greedy decode result. If all the sequences in result were
3642
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3643 3644 3645 3646 3647

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3648

3649
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3650
    """
3651
    helper = LayerHelper("ctc_greedy_decoder", **locals())
3652
    _, topk_indices = topk(input, k=1)
3653 3654 3655 3656 3657 3658

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3659
        outputs={"Output": [ctc_out]},
3660 3661
        attrs={"merge_repeated": True,
               "blank": blank})
3662
    return ctc_out
3663 3664


F
fengjiayi 已提交
3665
def warpctc(input, label, blank=0, norm_by_times=False):
3666
    """
3667 3668
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
3669
    to compute Connectionist Temporal Classification (CTC) loss.
3670 3671
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
3672 3673 3674
    input tensor.

    Args:
3675
       input (Variable): The unscaled probabilities of variable-length sequences,
3676 3677 3678 3679
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3680
       label (Variable): The ground truth of variable-length sequence,
3681 3682 3683
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
3684 3685
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3686 3687 3688
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3689
         follewed by a mean_op.
3690 3691

    Returns:
3692 3693
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
3694 3695

    Examples:
3696

3697
        .. code-block:: python
3698

3699 3700 3701
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
3702 3703

    """
F
fengjiayi 已提交
3704
    helper = LayerHelper('warpctc', **locals())
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3731 3732 3733
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3734 3735 3736 3737 3738
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3739

3740
            out.lod  = [[0, 1, 3]]
3741 3742 3743 3744

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3745 3746 3747 3748 3749 3750 3751
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3752 3753 3754

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3755 3756

    Returns:
3757

3758 3759 3760 3761 3762
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3763
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3764
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3765 3766 3767 3768 3769 3770 3771 3772 3773
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
3774 3775


3776 3777 3778 3779
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3780 3781 3782 3783 3784 3785 3786
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3787 3788 3789 3790 3791 3792 3793
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3794 3795
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3796
            sample is 1.0.
3797 3798 3799
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3800

3801
    Returns:
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3829
    """
Y
Yang Yu 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3874
    return cost / (num_neg_samples + 1)
3875 3876


G
guosheng 已提交
3877
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3878 3879
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3880
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3890

W
weixing02 已提交
3891
    Args:
M
minqiyang 已提交
3892
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3893 3894 3895 3896 3897
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3898 3899
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3900
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3901 3902
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3903 3904 3905 3906 3907 3908 3909 3910

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3911 3912 3913
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3914 3915 3916 3917 3918 3919 3920 3921
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3922
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3923 3924 3925 3926 3927
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3928 3929 3930 3931 3932 3933 3934 3935
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3936 3937
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3938
        inputs=inputs,
W
weixing02 已提交
3939 3940 3941 3942 3943 3944
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3945
def transpose(x, perm, name=None):
3946 3947 3948 3949 3950 3951 3952
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3953 3954 3955
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
3956 3957 3958 3959 3960 3961 3962 3963

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3964
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
3965 3966
    """

Y
fix ci.  
ying 已提交
3967
    if len(perm) != len(x.shape):
3968 3969 3970
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3971 3972 3973 3974 3975 3976
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
3977 3978

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3979
    out = helper.create_tmp_variable(x.dtype)
3980 3981
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3982
        inputs={'X': [x]},
3983 3984 3985
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3986 3987


3988 3989 3990 3991 3992 3993 3994
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3995
    """
3996 3997 3998 3999 4000 4001 4002
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4031 4032 4033 4034 4035 4036 4037 4038 4039
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4040 4041 4042
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4043 4044 4045 4046 4047
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4075 4076 4077
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4090
            output.dims = {8, 8}
4091

4092
            output.lod = [[4, 4]]
4093

D
dzhwinter 已提交
4094
     Examples:
4095 4096 4097

        .. code-block:: python

4098 4099
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4100 4101

    """
W
wanghaoshuang 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4112 4113 4114 4115 4116 4117 4118
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4119
    helper = LayerHelper('im2sequence', **locals())
4120 4121
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4122
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4123
    return out
4124 4125


Y
yuyang18 已提交
4126
@templatedoc()
4127
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4128 4129
    """
    ${comment}
4130 4131

    Args:
Y
yuyang18 已提交
4132
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4133 4134
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4135 4136 4137 4138 4139
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4140
        ${out_comment}.
4141 4142

    Examples:
Y
yuyang18 已提交
4143 4144 4145 4146
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4159
    return helper.append_activation(out)
4160 4161


Y
yuyang18 已提交
4162
@templatedoc()
4163 4164
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4165 4166 4167 4168 4169 4170 4171
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4172 4173

    Args:
Y
yuyang18 已提交
4174 4175
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4176 4177

    Returns:
Y
yuyang18 已提交
4178
        ${out_comment}.
4179 4180
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4181 4182 4183 4184 4185 4186

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4187 4188 4189 4190 4191 4192
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4193 4194 4195 4196 4197


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4198

4199 4200 4201 4202
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4203

4204 4205 4206
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4207

4208 4209 4210
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4211

4212
    The equation is as follows:
4213

4214
    1) Hard label (one-hot label, so every sample has exactly one class)
4215

4216 4217 4218 4219
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4220

4221 4222 4223
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4246 4247
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4264 4265
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
4266
    For each instance, it computes the smooth L1 loss element by element first
4267
    and then sums all the losses. So the shape of ouput Variable is
4268
    [batch_size, 1].
4269

4270 4271
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
4272
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4273
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4274
            L1 loss op with same shape as :attr:`x`.
4275
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4276 4277
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4278
            by this tensor element by element.
4279
        outside_weight (Variable|None): A tensor with rank at least 2. This
4280 4281
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4282
            element by element.
4283
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4284 4285
           scalar with default value 1.0.

4286
    Returns:
4287
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4288 4289 4290 4291 4292

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4293 4294
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4295
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4296
            out = fluid.layers.smooth_l1(x=fc, y=label)
4297
    """
4298

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4314 4315 4316 4317


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4318
    This layer creates the one-hot representations for input indices.
4319 4320

    Args:
Y
Yibing Liu 已提交
4321 4322
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4323 4324

    Returns:
Y
Yibing Liu 已提交
4325
        Variable: The one-hot representations of input.
4326 4327

    Examples:
4328
        .. code-block:: python
4329

Y
Yibing Liu 已提交
4330 4331
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4332 4333 4334 4335 4336 4337 4338 4339 4340
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4341 4342


Y
Yu Yang 已提交
4343
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4344
    """
Y
yi.wu 已提交
4345 4346 4347
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4348 4349 4350 4351 4352 4353

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4354 4355
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4356 4357 4358 4359 4360 4361

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4362 4363
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4364 4365
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4366 4367 4368 4369 4370
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4371
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4372
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4373 4374
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4375 4376
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4377 4378 4379
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4380 4381


4382
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
4383
    """
C
caoying03 已提交
4384 4385
    Gives a new shape to the input Tensor without changing its data.

4386 4387 4388 4389 4390
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4391

4392
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4393

4394 4395 4396 4397
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4398
    2. 0 means the actual dimension value is going to be copied from the
4399 4400 4401 4402
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4403 4404

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4405
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4406
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4407

4408
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4409 4410
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4411 4412
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4413
    dimensions.
C
caoying03 已提交
4414

4415
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4416 4417 4418 4419
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
4420 4421

    Args:
4422
        x(variable): The input tensor.
4423 4424
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4425 4426 4427 4428 4429
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4430
        act (str): The non-linear activation to be applied to output variable.
4431 4432 4433 4434
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4435
        name (str): The name of this layer. It is optional.
4436

4437 4438
    Returns:
        Variable: The output tensor.
4439

4440 4441 4442
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

4443 4444
    Examples:
        .. code-block:: python
4445

4446
            data = fluid.layers.data(
4447
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4448
            reshaped = fluid.layers.reshape(
4449
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
4450 4451 4452 4453
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
4454 4455 4456 4457 4458
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
4459

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4475
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4476
    out = helper.create_tmp_variable(dtype=x.dtype)
4477 4478
    helper.append_op(
        type="reshape",
4479
        inputs=inputs,
D
dzhwinter 已提交
4480 4481
        attrs={"shape": shape},
        outputs={"Out": out})
4482

D
dzhwinter 已提交
4483
    return helper.append_activation(out)
4484 4485


4486
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4487
    """
Y
Yibing Liu 已提交
4488
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4489 4490 4491 4492
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4493
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4494 4495 4496 4497 4498 4499

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4500
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4501 4502 4503
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4504
            target_lod: [4, 2]
Y
yangyaming 已提交
4505 4506

            then we get a 1-level LoDTensor:
4507
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4508 4509 4510 4511 4512 4513
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4514
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4515 4516 4517 4518
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4519
                y.data = [[2, 4]]
Y
yangyaming 已提交
4520 4521 4522
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4523
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4524 4525 4526 4527 4528 4529
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4530
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4531 4532 4533 4534
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4535
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4536 4537 4538 4539
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4540
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4541 4542 4543 4544 4545
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4546
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4547
                           from :attr:`y`.
Y
yangyaming 已提交
4548
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4549
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4550 4551

    Returns:
Y
Yibing Liu 已提交
4552
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4553 4554

    Raises:
Y
Yibing Liu 已提交
4555
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4591
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4620 4621
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
4649 4650 4651 4652


def pad(x, paddings, pad_value=0., name=None):
    """
4653
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4654
    padded width is specified by :attr:`paddings`.
4655

4656 4657 4658 4659
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4682
                         The length of :attr:paddings must be
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4708 4709 4710 4711 4712 4713 4714 4715 4716


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4717 4718
    called label-smoothing regularization (LSR).

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4742
                              be :math:`(1, class\_num)`.
4743 4744
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4745
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4773 4774


Y
yi.wu 已提交
4775
@templatedoc()
4776 4777
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4778
    ${comment}
4779 4780

    Args:
Y
yi.wu 已提交
4781 4782
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4783 4784 4785
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4786 4787

    Returns:
Y
update  
yi.wu 已提交
4788
        Variable: ${out_comment}.
4789 4790

    Examples:
4791 4792
        .. code-block:: python

4793
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4839 4840
        .. code-block:: python

W
whs 已提交
4841 4842 4843 4844
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4845
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4846 4847 4848 4849 4850 4851
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4852 4853


4854 4855 4856 4857 4858
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4859
    """
Q
qiaolongfei 已提交
4860
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4861

4862
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4863 4864 4865
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4866

4867
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4868

4869
    Args:
4870
        input (Variable): The input tensor of image resize layer,
4871 4872
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4873
        out_shape(list|tuple|Variable|None): Output shape of image resize
4874 4875
                                    layer, the shape is (out_h, out_w).
                                    Default: None
4876
        scale(float|None): The multiplier for the input height or width.
4877 4878 4879
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4880 4881
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4882 4883
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4884 4885

    Returns:
Q
update  
qiaolongfei 已提交
4886 4887
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4888

4889 4890 4891
    Examples:
        .. code-block:: python

4892
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4893
    """
4894 4895 4896 4897
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4898 4899
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4900 4901
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4902 4903 4904 4905

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4906 4907 4908
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4909
    if out_shape is not None:
4910 4911 4912
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4913 4914 4915 4916 4917 4918
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4919 4920 4921 4922
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4923 4924
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4925
        type=resample_methods[resample],
4926
        inputs=inputs,
4927 4928 4929 4930
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4931 4932


Y
yuyang18 已提交
4933
@templatedoc(op_type="bilinear_interp")
4934 4935
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4936 4937 4938 4939 4940 4941
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4942

Y
yuyang18 已提交
4943 4944 4945 4946 4947 4948 4949 4950
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4951 4952 4953 4954 4955 4956 4957
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4958 4959 4960
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4961 4962 4963 4964 4965 4966 4967
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4968
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4969

4970
    Returns:
Q
update  
qiaolongfei 已提交
4971
        Variable: The output is a 4-D tensor of the shape
4972
        (num_batches, channls, out_h, out_w).
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4983 4984 4985
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4986 4987 4988
    return image_resize(input=input, out_shape=out_shape, resample=resample)


4989 4990
def gather(input, index):
    """
Q
qiaolongfei 已提交
4991 4992
    **Gather Layer**

4993
    Output is obtained by gathering entries of the outer-most dimension
4994 4995 4996 4997
    of X indexed by `index` and concatenate them together.

    .. math::

4998
        Out = X[Index]
4999 5000 5001 5002 5003 5004 5005


    .. code-block:: text


                Given:

5006 5007
                X = [[1, 2],
                     [3, 4],
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5018
        input (Variable): The source input with rank>=1.
5019 5020 5021 5022 5023 5024
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5025

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5095

5096 5097 5098
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
5099
    """
F
stash  
fengjiayi 已提交
5100
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5101
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5102
    out = helper.create_tmp_variable(dtype)
5103 5104
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5105
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5106
    if isinstance(seed, int):
F
fengjiayi 已提交
5107 5108 5109 5110 5111
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5112 5113 5114 5115
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5116
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5117 5118
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5119 5120
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5121
    return out
W
whs 已提交
5122 5123


5124
def log(x, name=None):
5125 5126 5127 5128 5129
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5130
        Out = \\ln(x)
5131 5132

    Args:
5133
        x (Variable): Input tensor.
5134 5135
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
5136 5137 5138 5139 5140 5141 5142 5143

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5144
            output = fluid.layers.log(x)
5145 5146
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5147
    dtype = helper.input_dtype(input_param_name='x')
5148
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5149
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
5150 5151 5152
    return out


5153
def relu(x, name=None):
5154 5155
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5156
    where the rectified linear function, y = max(0, x), is applied to
5157 5158 5159 5160
    the tensor elementwise.

    .. math::

5161
        Out = \\max(0, x)
5162 5163

    Args:
5164
        x (Variable): The input tensor.
5165 5166
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
5167 5168 5169 5170 5171 5172 5173 5174

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5175
            output = fluid.layers.relu(x)
5176 5177
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5178
    dtype = helper.input_dtype(input_param_name='x')
5179
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5180
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
5181
    return out
5182 5183


W
whs 已提交
5184 5185 5186
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5187 5188 5189 5190
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5191
    .. math::
5192 5193

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5194

5195
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5196 5197 5198 5199 5200
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5201
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5202
                           Its shape should be the same as input.
5203
        num_classes (int): The possible number of labels.
W
whs 已提交
5204 5205 5206 5207

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5208
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5209 5210 5211 5212

    Examples:

        .. code-block:: python
5213

W
whs 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
5223 5224
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5225
        outputs={
5226 5227 5228
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5229 5230 5231
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5340

5341 5342
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5343

5344 5345 5346 5347
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5348

5349 5350 5351 5352 5353
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5354 5355 5356

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5401 5402


5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5469

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5480 5481
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5497
        ValueError: If axis is not in range [0, rank(x)].
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531


def stack(x, axis=0):
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5532 5533
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
X
Xin Pan 已提交
5534
    return out
新手
引导
客服 返回
顶部