executor.py 104.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37
from .compiler import _prune_feed_ops
38

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78 79
    :api_attr: Static Graph
    
80 81 82 83 84 85 86 87 88 89 90 91
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
92

93 94
    Returns:
        None
L
lujun 已提交
95

Y
yuyang18 已提交
96
    Examples:
97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
D
dzhwinter 已提交
147
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
148 149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
151
    if tensor._is_initialized():
152 153 154 155
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
156 157
    else:
        return None
D
dzhwinter 已提交
158 159


H
Huihuang Zheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
184 185
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


213
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
214 215
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
216
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
217 218 219

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
220 221
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
222 223 224 225
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
226
        feed (LoDTensor): the fed value, which must be a LoDTensor
227 228
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
229 230 231 232 233 234 235
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
236 237
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
238
            raise ValueError(
T
tianshuo78520a 已提交
239 240
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
241
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
242
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
243 244 245 246 247
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
248 249
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
250 251 252
    return True


253 254 255 256 257 258 259 260 261 262 263 264
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
265 266
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
267 268 269
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
270
        A boolean value that indicates whether a block has feed operators
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


291 292 293 294
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
295
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
296

297 298 299 300 301 302 303 304 305
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
306 307 308
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
309
        fetch_op: the operator name of fetch
310

X
xuwei06 已提交
311 312 313
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
314 315 316 317
    """

    fetch_count = 0
    for op in block.ops:
318
        if op.desc.type() == fetch_op:
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
335
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
336
    """
C
chengduoZH 已提交
337 338 339
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
340
    Args:
341 342 343 344
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
345 346 347 348
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
349 350 351
    Returns:
       LodTensor|numpy.ndarray
    """
352
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
353 354
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
355
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
356

357
    var = scope.find_var(_to_name_str(name))
358 359 360 361
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
362 363
    tensor = var.get_tensor()
    if return_numpy:
364
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
365 366 367
    return tensor


X
polish  
Xin Pan 已提交
368
def _to_name_str(var):
369 370 371 372 373 374 375 376
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
377
            return str(id(var))
378 379 380 381 382 383 384 385 386 387
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
388
    else:
389
        return _to_str(var)
Q
qiaolongfei 已提交
390 391


392 393 394 395 396
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
397

398
    env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', '1')
399 400
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
401

402 403 404
    return flag


405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


422
def _get_strong_program_cache_key(program, feed, fetch_list):
423 424 425 426 427 428 429 430 431 432 433
    # NOTE(xiongkun) id(proram) may be duplicate. So add addition var_name as cache key. 
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
    return _get_varname_from_block(inner_program.blocks[0]) + str(id(
        program)) + _get_program_cache_key(feed, fetch_list)
434 435


X
polish  
Xin Pan 已提交
436
def _get_program_cache_key(feed, fetch_list):
437 438 439 440 441 442
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
443
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
444 445 446
    return str(feed_var_names + fetch_var_names)


447
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
461
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
462
            data(core.Place): the place of created tensor
463
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
464 465 466 467

        Returns:
            LoDTensor
        """
468
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
469
    if not isinstance(data, np.ndarray):
470 471 472
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
473 474
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
475 476 477 478 479 480 481 482 483 484 485 486 487
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
488

489
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
490 491 492 493 494
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


495
class FetchHandler(object):
D
Dong Daxiang 已提交
496 497 498
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
499 500
        self.period_secs = period_secs

D
Dong Daxiang 已提交
501 502 503 504 505
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
506 507 508 509

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
510 511 512 513 514 515 516 517
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
518 519 520
""")


521
class _StandaloneExecutor(object):
522
    def __init__(self, place, main_program, scope):
523 524 525
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
526
        self._scope = scope
527 528
        self._new_exe = self._create_new_executor()

529
    def run(self, feed_names, fetch_list, return_numpy=True):
530 531
        """
        Args:
532
            feed_names(list): This parameter represents the input names of the model.
533 534 535 536 537 538 539 540
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

541
        tensors = self._new_exe.run(feed_names, fetch_list)._move_to_list()
542 543 544 545 546 547 548 549 550
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
551
                                          self._main_program.desc, self._scope)
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}


Y
Yu Yang 已提交
613
class Executor(object):
614
    """
615 616
    :api_attr: Static Graph

617
    An Executor in Python, supports single/multiple-GPU running,
618
    and single/multiple-CPU running.
C
chengduo 已提交
619 620

    Args:
621
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
622 623 624 625
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
626
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
627 628 629
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
630 631 632

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
633

634
    Examples:
S
Fix doc  
sneaxiy 已提交
635 636
        .. code-block:: python

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

688 689
    """

690 691
    def __init__(self, place=None):
        if place is None:
692 693
            expected_place = framework._current_expected_place()
            self.place = expected_place
694
        else:
695
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
696
        self.program_caches = dict()
697
        self.ctx_caches = dict()
698
        self.trainer_caches = dict()
699 700
        self.scope_caches = dict()
        self.var_caches = dict()
701
        self.pruned_program_caches = dict()
702 703 704
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
705
        self._closed = False
706
        self.pruned_program_scope_caches = dict()
707
        self._prepare_to_run_called = False
D
dzhwinter 已提交
708

709 710 711
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

712 713 714 715
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

716 717
        self._fleet_executor = None

718 719 720
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

721 722 723
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

724 725 726
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
727 728 729 730 731 732
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

733 734 735 736 737 738 739 740 741 742 743 744
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

745 746 747
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

748 749 750
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

751 752 753
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

754 755 756 757 758 759
    def _add_feed_fetch_ops(self,
                            program,
                            feed,
                            fetch_list,
                            feed_var_name,
                            fetch_var_name,
760
                            use_fetch_v2=False):
Q
Qiao Longfei 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
784 785 786 787 788 789 790 791 792 793 794
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
795 796 797 798 799

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'
800

Q
Qiao Longfei 已提交
801
        # append fetch_operators
802 803
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
Q
Qiao Longfei 已提交
804
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
805 806 807
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
808
                global_block.append_op(
809
                    type=fetch_op,
Q
Qiao Longfei 已提交
810 811 812 813 814 815 816 817
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
818 819
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
820 821 822
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
823
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
824 825 826 827 828
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
829 830 831 832 833 834 835 836
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
837
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
838 839 840
        ]
        return outs

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

873
        for index, item in enumerate(fetch_list):
874 875 876 877 878 879 880
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
881 882 883 884
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".
                        format(index, index, index, type(item[0]).__name__))
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
998 999 1000 1001 1002 1003
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1004 1005
    def close(self):
        """
C
chengduo 已提交
1006 1007 1008
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1009

C
chengduo 已提交
1010 1011
        Returns:
            None
1012 1013 1014 1015

        Examples:
            .. code-block:: python

1016
              import paddle
1017

1018 1019
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1020 1021
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1022
        """
1023
        if not self._closed:
Y
Yancey1989 已提交
1024
            self._closed = True
1025 1026 1027 1028
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1029

X
fix  
Xin Pan 已提交
1030
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1031
                      return_numpy, return_merged):
1032
        from paddle.optimizer.lr import LRScheduler
1033
        exe = program._executor
H
Huihuang Zheng 已提交
1034 1035 1036 1037 1038
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1039 1040 1041 1042
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1043
                var = global_block.var(feed_name) if need_check_feed else None
1044
                if not isinstance(feed_tensor, core.LoDTensor):
1045
                    # always set to CPU place, since the tensor need to be split
1046
                    # it is fast in CPU
1047 1048 1049
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
1050
                if need_check_feed:
1051
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1052
                feed_tensor_dict[feed_name] = feed_tensor
1053
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1064 1065
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1066
                    if not isinstance(tensor, core.LoDTensor):
1067 1068 1069
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
1070 1071
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1072 1073
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1074

1075
            exe.feed_tensors_into_local_scopes(res)
1076

1077 1078
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1079
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1080 1081 1082
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1083 1084 1085 1086 1087 1088 1089 1090 1091
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
                exe.feed_and_split_tensor_into_local_scopes({
                    lr_sheduler._var_name: lr_tensor
                })
1092

X
polish  
Xin Pan 已提交
1093
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1094
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1095
        return as_numpy(tensors) if return_numpy else tensors
1096

Y
Yu Yang 已提交
1097
    def run(self,
Y
Yu Yang 已提交
1098
            program=None,
1099 1100
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1101
            feed_var_name='feed',
Y
Yu Yang 已提交
1102
            fetch_var_name='fetch',
D
dzhwinter 已提交
1103
            scope=None,
1104
            return_numpy=True,
Z
Zhen Wang 已提交
1105
            use_program_cache=False,
1106 1107
            return_merged=True,
            use_prune=False):
1108
        """
C
chengduo 已提交
1109 1110 1111
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1112 1113
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1114

C
chengduo 已提交
1115 1116 1117
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1118
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1119
                The default is None.
1120
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1121
                If it is single card training, the feed is dict type, and if it is multi-card
1122
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1123 1124 1125 1126 1127 1128 1129
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1130
            fetch_list(list): This parameter represents the Tensors that need to be returned
1131
                after the model runs. The default is None. 
1132
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1133
                the feed operator. The default is "feed".
1134
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1135 1136
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1137 1138 1139
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1140 1141 1142
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1143 1144
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1145
                The default is False.
1146
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1147 1148
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1149 1150 1151 1152 1153 1154 1155 1156
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1157 1158 1159 1160 1161 1162 1163
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1180 1181
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1182

Z
Zhen Wang 已提交
1183
        Examples 1:
1184 1185
            .. code-block:: python

1186 1187
                import paddle
                import numpy
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1201

1202 1203
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1204

1205 1206 1207 1208 1209
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1210 1211 1212 1213

        Examples 2:
            .. code-block:: python

1214
                import paddle
Z
Zhen Wang 已提交
1215 1216 1217
                import numpy as np

                # First create the Executor.
1218 1219 1220
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1221

1222
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1223
                class_dim = 2
1224 1225 1226
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1227 1228 1229
                adam.minimize(loss)

                # Run the startup program once and only once.
1230 1231 1232 1233 1234
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1235 1236 1237 1238
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1239 1240 1241 1242
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1243 1244 1245 1246
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1247 1248
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1249 1250 1251
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1252 1253 1254 1255
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1256 1257
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1258 1259
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1260
                print(merged_prediction)
1261
 
Z
Zhen Wang 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1276

1277
        """
C
chengduo 已提交
1278
        try:
1279
            res = self._run_impl(
C
chengduo 已提交
1280 1281 1282 1283 1284 1285 1286
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1287
                use_program_cache=use_program_cache,
1288
                use_prune=use_prune,
Z
Zhen Wang 已提交
1289
                return_merged=return_merged)
1290 1291
            core.update_autotune_status()
            return res
C
chengduo 已提交
1292
        except Exception as e:
1293
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1294 1295

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1296
                  fetch_var_name, scope, return_numpy, use_program_cache,
1297
                  return_merged, use_prune):
Y
Yancey1989 已提交
1298 1299 1300
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1301
        use_default_main_program = program is None
1302 1303
        if program is None:
            program = default_main_program()
1304

1305
        fetch_list = self._check_fetch_list(fetch_list)
1306 1307

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1308
            if "fleet_opt" in program._pipeline_opt:
1309 1310 1311
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
L
LiYuRio 已提交
1312
                return self._run_using_fleet_executor(
1313
                    program=program, feed=feed, fetch_list=fetch_list)
1314 1315 1316
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1317 1318 1319 1320
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
1321 1322

        if isinstance(program, Program) and program._heter_pipeline_opt:
1323 1324 1325 1326 1327 1328 1329
            ## change default executor 
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1330 1331 1332
            if "startup_program" in program._heter_pipeline_opt:
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1333
        if isinstance(program, Program) and \
1334
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1335
            if use_default_main_program:
1336 1337 1338 1339 1340 1341 1342 1343
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1344
            warnings.warn(error_info)
1345

1346 1347
        if scope is None:
            scope = global_scope()
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1381
        def _can_use_interpreter_core(program, place):
1382 1383 1384 1385
            if core.is_compiled_with_npu() or core.is_compiled_with_xpu(
            ) or core.is_compiled_with_mlu() or core.is_compiled_with_ipu():
                return False

1386
            compiled = isinstance(program, compiler.CompiledProgram)
1387
            # NOTE(zhiqiu): do not support compiled program now
1388
            if compiled:
1389 1390 1391 1392 1393 1394
                return False
                # if program._is_data_parallel and len(
                #         program._get_places(place, program._places)) == 1:
                #     return True
                # else:
                #     return False
1395
            else:
1396 1397
                if isinstance(program._graph, compiler.CompiledProgram):
                    return False
1398 1399 1400
                assert isinstance(program, Program)
                return True

1401 1402
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1403 1404 1405
        if self._enable_interpreter_core and _can_use_interpreter_core(
                program, self.place):
            inner_program = program._program if isinstance(
1406
                program, compiler.CompiledProgram) else program
1407
            if not inner_program._is_start_up_program_:
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                if feed is None:
                    feed = {}
                elif isinstance(feed, (list, tuple)):
                    assert len(feed) == 1, "Not compiled with data parallel"
                    feed = feed[0]
                if not isinstance(feed, dict):
                    raise TypeError(
                        "feed requires dict as its Parameter. But you passed in %s"
                        % (type(feed)))
                feed = self._update_feed(program, feed)
1418 1419 1420 1421 1422 1423 1424

                key = _get_strong_program_cache_key(inner_program, feed,
                                                    fetch_list)

                # a little bit tricy here, use inner_program before _add_feed_fetch_ops to get key
                # while use program to geet _StandaloneExecutor
                if key not in self._executor_cache._cached_executors:
1425 1426 1427 1428 1429 1430 1431 1432
                    program = self._add_feed_fetch_ops(
                        program=inner_program,
                        feed=feed,
                        fetch_list=fetch_list,
                        feed_var_name=feed_var_name,
                        fetch_var_name=fetch_var_name,
                        use_fetch_v2=True)

1433 1434 1435
                    new_program = program.clone()
                    new_exe = _StandaloneExecutor(self.place, new_program,
                                                  scope)
1436 1437
                    self._executor_cache._cached_executors[key] = (new_program,
                                                                   new_exe)
1438

1439
                program, new_exe = self._executor_cache._cached_executors[key]
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                self._feed_data(program, feed, feed_var_name, scope)
                if hasattr(program, 'lr_sheduler'):
                    from paddle.optimizer.lr import LRScheduler
                    assert isinstance(program.lr_sheduler,
                                      LRScheduler), "must be LRScheduler"
                    lr_sheduler = program.lr_sheduler
                    lr_value = lr_sheduler()
                    lr_var = program.global_block().vars[lr_sheduler._var_name]
                    data = np.array(
                        [lr_value]).astype(convert_dtype(lr_var.dtype))
                    tensor = core.get_variable_tensor(scope,
                                                      lr_sheduler._var_name)
1453 1454 1455 1456
                    # NOTE(dev): `set` always call TensorCopySync that is a 
                    # blocking behavior. So we use `_copy_from` to replace it.
                    cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                    tensor._copy_from(cpu_tensor, self.place)
1457

1458
                return new_exe.run(list(feed.keys()), fetch_list, return_numpy)
1459

X
polish  
Xin Pan 已提交
1460
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1476
                    varobj.stop_gradient == True and \
1477 1478 1479 1480 1481
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1482 1483
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1484
        # For backward compatibility, run directly.
1485
        if not compiled:
1486 1487 1488
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1504
            return self._run_program(
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1515 1516 1517
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1518
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1519
                program,
1520 1521 1522
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1523
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1524 1525
                return_numpy=return_numpy,
                return_merged=return_merged)
1526

C
chengduo 已提交
1527
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1528
                     fetch_var_name, scope, return_numpy, use_program_cache):
1529
        from paddle.optimizer.lr import LRScheduler
1530 1531
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1532 1533 1534 1535
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1536
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1537 1538 1539
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1540

1541
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1542
        if not isinstance(program, Program):
D
dzhwinter 已提交
1543 1544 1545
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1546

1547 1548 1549 1550 1551
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1552
        if use_program_cache:
1553
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1554
            cached_program = self._get_program_cache(cache_key)
1555
            cached_ctx = self._get_ctx_cache(cache_key)
1556
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1557 1558 1559 1560 1561 1562 1563 1564
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1565
                fetch_list_str = list(map(_to_name_str, fetch_list))
1566
                cached_ctx = self._default_executor.prepare(
1567 1568 1569 1570 1571 1572 1573
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1574 1575
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1576
                self._add_ctx_cache(cache_key, cached_ctx)
1577
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1578
            program = cached_program
1579
            ctx = cached_ctx
1580
            scope = cached_scope
1581
        else:
Q
Qiao Longfei 已提交
1582 1583 1584 1585 1586 1587 1588 1589
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1590 1591
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1592
                              LRScheduler), "must be LRScheduler"
1593 1594 1595 1596 1597 1598 1599
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1600
        if not use_program_cache:
C
chengduo 已提交
1601
            self._default_executor.run(program.desc, scope, 0, True, True,
1602
                                       [fetch_var_name])
1603
        else:
1604 1605
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1606
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1607
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1608
        if return_numpy:
1609 1610 1611
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1612

X
Xin Pan 已提交
1613 1614
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    def _check_fetch_list(self, fetch_list):
        is_fetch_var = lambda var: isinstance(var, (Variable, str, six.string_types))
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".
                    format(i, type(var).__name__))

        return res

1645 1646
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1647
            fout.write(str(trainer))
1648
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1649 1650 1651
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1668 1669 1670 1671 1672 1673 1674 1675 1676
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1677
        is_heter = 0
T
Thunderbrook 已提交
1678
        use_ps_gpu = 0
T
Thunderbrook 已提交
1679 1680 1681
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1682
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1683
                is_heter = 1
T
Thunderbrook 已提交
1684 1685
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1686 1687 1688 1689
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1690 1691 1692
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1693
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1694 1695 1696 1697 1698
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1699
        if not compiled:
H
hutuxian 已提交
1700 1701 1702 1703
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1704 1705 1706
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1707 1708
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1709
                trainer._set_thread_barrier(program._is_distributed)
1710
            trainer._set_program(program)
T
Thunderbrook 已提交
1711 1712
            if is_heter:
                trainer._set_heter_info(ret)
1713
        else:
H
hutuxian 已提交
1714 1715 1716
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1717 1718 1719
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1720 1721 1722
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1723
            trainer._set_program(program.program)
H
hutuxian 已提交
1724

1725
        if thread <= 0:
T
Thunderbrook 已提交
1726 1727 1728
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1729
                raise RuntimeError(
1730 1731
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1732
            else:
1733
                trainer._set_thread(dataset.thread_num)
1734
        else:
1735
            trainer._set_thread(thread)
H
hutuxian 已提交
1736

1737 1738
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1739
        return scope, trainer
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1762 1763 1764 1765 1766 1767
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1768 1769 1770 1771
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1772 1773
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1774
            heter_place = program._heter_pipeline_opt["heter_place"]
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
            if stage_id != 0:
                import paddle
                if dataset is not None:
                    raise RuntimeError(
                        "dataset should be None for heter pipeline mode")
                # The following fake dataset is created to call 
                # the _prepare_trainer api, and it is meaningless.
                data_vars = []
                for var in program.global_block().vars.values():
                    if var.is_data:
                        data_vars.append(var)
1786 1787
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
1788 1789 1790 1791 1792 1793 1794 1795
                dataset.set_batch_size(1)
                dataset.set_thread(1)
                dataset.set_filelist(['None'])
                dataset.set_use_var(data_vars)
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1796 1797 1798 1799 1800
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1801 1802 1803
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1804 1805

        dataset._prepare_to_run()
1806 1807
        real_fetch_list = []
        if program._pipeline_opt:
1808
            real_program = program._pipeline_opt["section_program"]
1809 1810 1811 1812 1813 1814 1815 1816
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1831
            fetch_list = None
1832 1833 1834 1835 1836
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1837 1838 1839 1840
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1841 1842 1843 1844

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1845
        if program._pipeline_opt is None:
1846 1847
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
1848 1849 1850
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
T
tangwei12 已提交
1851
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
        if program._heter_pipeline_opt is None:
            trainer_instance = self._default_executor.init_for_dataset(
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
1868

T
tangwei12 已提交
1869 1870 1871 1872 1873 1874
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
1875 1876
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1877 1878
        else:
            self._default_executor.run_from_dataset(trainer_instance)
1879 1880
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1881 1882

        dataset._dynamic_adjust_after_train()
1883
        dataset._finish_to_run()
1884 1885 1886 1887
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1888

1889 1890
        return None

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

            real_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
1983 1984 1985
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
1986 1987 1988
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
1989 1990 1991 1992
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
1993
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
1994

1995 1996
        return ctx

1997 1998 1999 2000 2001 2002 2003
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
                                        fleet_opt=None):
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2004
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2005
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2006
        nrank = len(trainer_endpoints)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2017
        else:
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
                    program, cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}), nrank)
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2045 2046
        place = core.Place()
        place.set_place(self.place)
2047 2048
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2049
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2050 2051
                                  num_micro_batches, tasks, task_id_to_rank,
                                  [])
2052

L
LiYuRio 已提交
2053 2054
    def _run_using_fleet_executor(self,
                                  program=None,
2055 2056 2057 2058 2059 2060
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
                                  fetch_list=None):
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2061
        cached_scope = self._get_scope_cache(cache_key)
2062 2063 2064 2065
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2066 2067
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2068 2069 2070 2071 2072 2073 2074 2075 2076
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
            cached_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)
2077 2078 2079 2080 2081 2082 2083 2084
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2085
            self._add_program_cache(cache_key, cached_program)
2086
            fleet_opt = program._pipeline_opt["fleet_opt"]
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name)
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2122
            self._prepare_fleet_executor_carrier(
2123 2124 2125 2126
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt)
2127

2128
        if feed:
2129 2130 2131
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2132
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2145 2146
        self._fleet_executor.run(cache_key)

2147 2148 2149 2150
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2151 2152
        return None

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

    def _add_fetch_ops(self,
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2232
        scope, real_fetch_list, trainer_instance = \
2233 2234 2235 2236 2237
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2248 2249
        self._default_executor.run_from_dataset(trainer_instance)

2250 2251 2252
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2253 2254 2255 2256 2257 2258 2259
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2260 2261 2262 2263 2264
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2265 2266 2267
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2268 2269
                           print_period=100,
                           fetch_handler=None):
2270
        """
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2282

2283 2284
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2285
                if not provided, then default_main_program (not compiled) will be used.
2286
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2287 2288
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2289
            scope(Scope): the scope used to run this program, you can switch it to different scope
2290 2291 2292
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2293
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2294
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2295
                training, default is None
2296
            fetch_info(String List): print information for each Tensor, default is None
2297
            print_period(int): the number of mini-batches for each print, default is 100
2298
            fetch_handler(FetchHandler): a user define class for fetch output.
2299

2300 2301 2302 2303
        Returns:
            None

        Examples:
2304 2305

            .. code-block:: python
2306

2307
                import paddle
2308

2309 2310 2311 2312 2313 2314
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2315
                dataset.set_use_var([x, y])
2316
                dataset.set_thread(1)
2317 2318
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2319
                dataset.set_filelist(filelist)
2320 2321 2322
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2323

2324
        """
2325 2326 2327
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2328

T
Thunderbrook 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2383 2384 2385 2386 2387 2388 2389 2390
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2391 2392
                           print_period=100,
                           fetch_handler=None):
2393 2394 2395 2396 2397 2398 2399 2400
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2401

2402 2403 2404 2405
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2406
                if not provided, then default_main_program (not compiled) will be used.
2407
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2408 2409
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2410
            scope(Scope): the scope used to run this program, you can switch it to different scope
2411 2412 2413
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2414
            debug(bool): whether a user wants to run train_from_dataset 
2415
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2416
                during training
2417
            fetch_info(String List): print information for each Tensor, its length should be equal
2418 2419
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2420
            fetch_handler(FetchHandler): a user define class for fetch output.
2421 2422 2423

        Returns:
            None
2424
        
2425
        Examples:
2426
        
2427 2428
            .. code-block:: python

2429
              import paddle
2430

2431 2432 2433 2434 2435 2436
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2437
              dataset.set_use_var([x, y])
2438
              dataset.set_thread(1)
2439 2440
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2441
              dataset.set_filelist(filelist)
2442 2443
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2444
                                     dataset=dataset)
2445 2446

        """
2447 2448 2449
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)