tensor.py 53.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
26 27
import warnings
from ..data_feeder import convert_dtype
Y
Yu Yang 已提交
28 29

__all__ = [
L
li099 已提交
30 31 32
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
33
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
34
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
39
    """
W
wangchaochaohu 已提交
40
    Create a variable, which will hold a Tensor with data type dtype.
41 42

    Args:
W
wangchaochaohu 已提交
43 44 45 46
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
47
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
48
            default value is False.
49 50

    Returns:
W
wangchaochaohu 已提交
51
        Variable: The tensor to be created according to dtype.
52 53 54 55

    Examples:
        .. code-block:: python

56
          import paddle.fluid as fluid
57 58
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
59
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
60 61
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
62 63


64 65
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
66
                     name=None,
67 68 69 70
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
71
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
72 73 74 75 76
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

77 78 79 80 81 82 83
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
84 85 86
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
87
        default_initializer (Initializer, optional): Initializer for the parameter
88 89

    Returns:
90
        The created parameter.
Y
yuyang18 已提交
91 92

    Examples:
93 94
        .. code-block:: python

95
            import paddle.fluid as fluid
96 97
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
98
    """
Q
Qiao Longfei 已提交
99
    helper = LayerHelper("create_parameter", **locals())
100
    if attr is None:
X
xuwei06 已提交
101
        attr = ParamAttr(name=name)
102 103 104 105
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


106 107 108 109 110 111 112
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
113
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
114

115 116 117
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
118
                      variable will be filled with it.
119 120
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
121
                           Default: False
122
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
123
                         Default: False
124 125
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
126 127

    Returns:
128
        Variable: The created Variable
F
fengjiayi 已提交
129 130 131 132

    Examples:
        .. code-block:: python

133
            import paddle.fluid as fluid
134 135 136
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
140 141 142 143 144
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
145 146 147
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
148

Q
Qiao Longfei 已提交
149 150 151
    return var


152
def cast(x, dtype):
Y
Yu Yang 已提交
153
    """
154 155 156
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
157 158

    Args:
159 160 161 162
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
163 164

    Returns:
165
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
166 167 168

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
169

170
            import paddle.fluid as fluid
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('cast', **locals())
195 196 197 198 199 200 201 202 203 204 205
    if not isinstance(x, Variable):
        raise TypeError(
            "The type of 'x' in cast must be Variable, but received %s" %
            (type(x)))
    if convert_dtype(x.dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'
    ]:
        raise TypeError(
            "The data type of 'x' in cast must be one of [bool, float16, float32, float64, int32, int64, uint8], but received %s."
            % (convert_dtype(x.dtype)))

X
Xin Pan 已提交
206
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
207 208 209 210 211 212 213 214 215
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


216
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
217
    """
218 219
    **Concat**

220
    This OP concatenates the input along the axis.
221 222

    Args:
223 224
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
225
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
226 227 228 229 230
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
231 232

    Returns:
233
        Variable: A Tensor with the same data type as input's.
234 235 236

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
237

238
            import paddle.fluid as fluid
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
261 262
    """
    helper = LayerHelper('concat', **locals())
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
    for x in input:
        if not isinstance(x, Variable):
            raise TypeError(
                "The type of x in 'input' in concat must be Variable, but received %s."
                % (type(x)))
        if convert_dtype(x.dtype) in ['float16']:
            warnings.warn(
                "The data type of x in 'input' in concat only support float16 on GPU now."
            )
        if convert_dtype(x.dtype) not in [
                'float16', 'float32', 'float64', 'int32', 'int64'
        ]:
            raise TypeError(
                "The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s."
                % (convert_dtype(x.dtype)))
283 284 285 286 287 288 289 290 291 292 293 294
    if not isinstance(axis, (int, Variable)):
        raise TypeError(
            "The type of 'axis' in concat must be int or Variable, but "
            "received %s." % (type(axis)))
    inputs = {'X': input}
    attrs = {}
    if isinstance(axis, Variable):
        axis.stop_gradient = True
        inputs['AxisTensor'] = axis
    else:
        attrs['axis'] = axis

X
Xin Pan 已提交
295
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
296
    helper.append_op(
297
        type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
298 299 300
    return out


301
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
302
    """
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
353 354

    Args:
355 356 357 358 359 360 361
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
362 363

    Returns:
364 365 366
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371
            import paddle.fluid as fluid
372
            import numpy as np
373 374 375 376 377 378 379
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
380
    """
L
li099 已提交
381
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
382 383 384
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
385
        type='tensor_array_to_tensor',
L
li099 已提交
386 387 388
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
389 390
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
391 392 393
    return out, out_index


394
def sums(input, out=None):
F
fengjiayi 已提交
395
    """
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
417 418

    Args:
419 420 421 422
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
423 424

    Returns:
425 426
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
427 428

    Examples:
F
fengjiayi 已提交
429
        .. code-block:: python
K
kavyasrinet 已提交
430

431 432 433 434 435 436 437 438 439
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
440

441 442
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
443 444 445
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
446 447
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
448 449 450 451 452
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
453 454 455
    return out


F
fengjiayi 已提交
456
def assign(input, output=None):
457
    """
458
    The OP copies the :attr:`input` to the :attr:`output`.
459

460 461 462 463 464
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
465 466

    Returns:
467
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
468 469 470

    Examples:
        .. code-block:: python
471

472
          import paddle.fluid as fluid
473 474 475 476 477 478
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
479
    """
Y
Yu Yang 已提交
480
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
481
    if isinstance(input, Variable):
482
        if convert_dtype(input.dtype) not in [
483
                'float32', 'float64', 'int32', 'int64', 'bool'
484 485 486
        ]:
            raise TypeError(
                "When the type of 'input' in assign is Variable, the data "
487 488
                "type of 'input' must be float32, float64, int32, int64 or "
                "bool, but received %s." % convert_dtype(input.dtype))
489 490 491
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
492
        helper.append_op(
R
robot 已提交
493
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
494 495
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
496
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
497
            value_name = "fp32_values"
498
            values = [float(v) for v in input.flat]
499
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
500
            value_name = "int32_values"
501
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
502
        else:
503 504 505 506
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
507 508 509
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
510 511 512
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
513 514 515 516 517 518
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
519
                value_name: values
X
xuwei06 已提交
520 521
            })
    else:
522 523
        raise TypeError("The type of 'input' in assign must be Variable or "
                        "numpy.ndarray, but received %s" % type(input))
X
xuwei06 已提交
524

Y
Yu Yang 已提交
525 526 527
    return output


Q
QI JUN 已提交
528
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
529
    """
W
wangchaochaohu 已提交
530
    This OP creates a Tensor with specified `shape` and `dtype`, and
531
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
532

W
wangchaochaohu 已提交
533
    The attribute `stop_gradient` of the created Tensor is setted to True.
534 535

    Args:
536 537 538 539
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
540 541 542 543 544 545 546
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
547 548

    Returns:
W
wangchaochaohu 已提交
549 550 551 552 553
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
554 555 556 557

    Examples:
        .. code-block:: python

558
          import paddle.fluid as fluid
559 560 561 562 563 564 565 566 567 568 569 570
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
571 572
    """
    helper = LayerHelper("fill_constant", **locals())
573 574 575 576 577 578 579
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
L
liym27 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "The type of 'shape' in fill_constant must be Variable, list or tuple, but "
            "received %s." % (type(shape)))

    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    def _contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
609
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
610 611
            if isinstance(dim, Variable):
                dim.stop_gradient = True
612 613 614 615 616 617 618 619
                if convert_dtype(dim.dtype) not in ['int32', 'int64']:
                    raise TypeError(
                        "When type of 'shape' in fill_constant is list or tuple, "
                        "the data type of the element with type Variable must be int32 or int64, "
                        "but received the data type of shape[%d] is %s." %
                        (idx, convert_dtype(dim.dtype)))
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
620 621 622 623 624 625 626 627 628
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
629 630 631 632 633 634
        if convert_dtype(shape.dtype) not in ['int32', 'int64']:
            raise TypeError(
                "When type of 'shape' in fill_constant is Variable, the data type of 'shape' must be int32 or int64, "
                "but received %s." % (convert_dtype(shape.dtype)))
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
635 636 637 638 639 640 641 642 643
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
644
    if out is None:
X
Xin Pan 已提交
645
        out = helper.create_variable_for_type_inference(dtype=dtype)
646 647 648 649 650 651
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
L
liym27 已提交
652
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
653 654
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
655
        inputs=inputs,
Y
Yu Yang 已提交
656
        outputs={'Out': [out]},
L
liym27 已提交
657
        attrs=attrs,
M
minqiyang 已提交
658
        stop_gradient=True)
Y
Yu Yang 已提交
659 660 661 662
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
663
@templatedoc()
Y
Yu Yang 已提交
664 665 666 667 668
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
669 670
                                  output_dim_idx=0,
                                  force_cpu=False):
671
    """
W
wangchaochaohu 已提交
672 673 674 675 676
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
677 678

    Args:
W
wangchaochaohu 已提交
679 680 681 682 683 684 685 686 687 688 689
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
690
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
691 692

    Returns:
W
wangchaochaohu 已提交
693
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
694 695 696 697 698

    Examples:

        .. code-block:: python

699
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
700
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
701
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
702
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
703

704
    """
Y
Yu Yang 已提交
705
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
706
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
707 708 709 710 711 712 713 714 715
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
716 717
            'output_dim_idx': output_dim_idx,
            'force_cpu': force_cpu or force_init_on_cpu()
Y
Yu Yang 已提交
718 719 720 721 722
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
723 724 725 726
def argmin(x, axis=0):
    """
    **argmin**

727 728
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
729 730

    Args:
731 732 733 734 735
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
736

S
sneaxiy 已提交
737
    Returns:
738
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
739

S
sneaxiy 已提交
740 741
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
742

743
            import paddle.fluid as fluid
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
771 772
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
773
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
774 775 776 777 778 779 780 781 782 783 784 785
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

786 787
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
788 789

    Args:
790 791 792 793 794
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
795

S
sneaxiy 已提交
796
    Returns:
797
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
798

S
sneaxiy 已提交
799 800
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
801

802
            import paddle.fluid as fluid
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
830 831
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
832
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
833 834 835 836 837 838 839 840
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


841
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
842
    """
843 844 845
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
846 847

    Args:
848 849 850 851 852 853 854 855
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
856 857

    Returns:
858 859 860
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
861 862 863 864

    Examples:
        .. code-block:: python

865
            import paddle.fluid as fluid
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
907 908
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
909 910 911 912
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
913 914 915 916
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
917 918
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
919 920 921
    return out, ids


Y
Yang Yu 已提交
922
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
923
    """
924 925
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
926

927 928 929 930 931 932 933
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
934 935

    Returns:
936
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
937 938 939 940

    Examples:
        .. code-block:: python

941
          import paddle.fluid as fluid
942
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
943
    """
C
chengduozh 已提交
944 945 946 947
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
948 949 950
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
951
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
952
    """
953 954
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
955

956 957 958 959 960 961 962
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
963 964

    Returns:
965
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
966 967 968 969

    Examples:
        .. code-block:: python

970
          import paddle.fluid as fluid
971
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
972
    """
973 974 975 976 977 978 979
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in zeros must be one of bool, float16, float32,"
            " float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
980
    return fill_constant(value=0.0, **locals())
981 982


F
fengjiayi 已提交
983 984
def reverse(x, axis):
    """
985
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
986

987 988 989 990 991
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
992 993

    Returns:
994
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
995 996 997 998

    Examples:
        .. code-block:: python

999
          import paddle.fluid as fluid
1000 1001 1002 1003
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1004 1005 1006 1007
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1008
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1009 1010
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1011
        inputs={'X': x},
F
fengjiayi 已提交
1012 1013 1014 1015 1016
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1017 1018 1019 1020 1021 1022 1023
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1024 1025 1026
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1042 1043
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1044
        file_path(str): The file path where variables will be saved.
1045
        overwrite(bool): Whether or not cover the given file when it has already
1046 1047
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1048 1049 1050 1051 1052 1053 1054 1055

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1056
            import paddle.fluid as fluid
1057 1058 1059 1060 1061 1062 1063
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1088 1089 1090 1091 1092 1093 1094


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
1095
       x (Variable): The Tensor/LoDTensor to be checked.
1096 1097

    Returns:
1098
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1099 1100 1101 1102 1103 1104 1105 1106
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1107 1108
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1110 1111 1112 1113 1114 1115 1116 1117 1118
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
1119
       x (Variable): The Tensor/LoDTensor to be checked.
1120 1121

    Returns:
1122
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1123 1124 1125 1126 1127 1128 1129 1130
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1131 1132
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1133
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1134 1135 1136 1137 1138 1139
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1140
    Test if any of x contains an infinity / nan number. If all the elements are finite,
1141 1142
    returns true, else false.

1143 1144 1145
    Note: The input to this operator Tensor / LoDTensor data type must be one of
    int32 / float / double.

1146
    Args:
1147
       x(Variable): The Tensor / LoDTensor to be checked.
1148 1149 1150

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1151 1152 1153 1154 1155

    Examples:

        .. code-block:: python

1156
            import paddle.fluid as fluid
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            import numpy

            # Graph Organizing
            var = fluid.data(name="data", shape=(4, 6), dtype="float32")
            output = fluid.layers.isfinite(var)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            img = numpy.ones((4, 6)).astype(numpy.float32)
            res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
            print(res)  # Output Value: [ True]
1170 1171
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1172
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1173 1174
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1184 1185 1186 1187
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1188
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1189 1190 1191
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1192
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
1193
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1194

L
Liufang Sang 已提交
1195 1196 1197
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1198 1199 1200 1201 1202

    examples:

        .. code-block:: python

1203
             import paddle.fluid as fluid
W
whs 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1224
    out.stop_gradient = True
W
whs 已提交
1225
    return out
Z
zhoukunsheng 已提交
1226 1227


Z
zhoukunsheng 已提交
1228 1229
def linspace(start, stop, num, dtype):
    """
1230
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1231 1232

    Args:
1233 1234 1235 1236 1237 1238 1239
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1240 1241

    Returns:
1242 1243 1244
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1245

Z
zhoukunsheng 已提交
1246
    Examples:
Z
zhoukunsheng 已提交
1247 1248
        .. code-block:: python

1249
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1250 1251
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1272 1273


Z
zhoukunsheng 已提交
1274 1275
def zeros_like(x, out=None):
    """
1276
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1277 1278 1279
    with `x`.

    Args:
1280 1281 1282 1283
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1284 1285

    Returns:
1286 1287
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1288 1289 1290 1291

    Examples:
        .. code-block:: python

1292
          import paddle.fluid as fluid
1293
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1294 1295
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1305 1306 1307 1308


def diag(diagonal):
    """
1309
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1310 1311

    Args:
1312 1313
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1314 1315

    Returns:
1316 1317
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1318 1319 1320 1321 1322 1323 1324

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1325 1326 1327

          import paddle.fluid as fluid
          import numpy as np
1328 1329 1330
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1346 1347


1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1360 1361
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1362 1363

    Returns:
1364
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1365 1366 1367 1368 1369

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1370 1371
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1372
          #  [0, 1, 0]
1373 1374
          #  [0, 0, 1]]

1375
          data = fluid.layers.eye(2, 3, dtype='int32')
1376
          # [[1, 0, 0]
1377
          #  [0, 1, 0]]
1378 1379

          data = fluid.layers.eye(2, batch_shape=[3])
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1432
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out