Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30dda5a7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30dda5a7
编写于
10月 15, 2019
作者:
L
liym27
提交者:
Aurelius84
10月 15, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] add fill_constant input(shape) dtype check. (#20620) (#20623)
test=release/1.6
上级
1822f86e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
79 addition
and
20 deletion
+79
-20
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+31
-5
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
+47
-14
未找到文件。
paddle/fluid/API.spec
浏览文件 @
30dda5a7
...
...
@@ -326,7 +326,7 @@ paddle.fluid.layers.concat (ArgSpec(args=['input', 'axis', 'name'], varargs=None
paddle.fluid.layers.sums (ArgSpec(args=['input', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', '191164436efbc1b7bccc4190a88e7de2'))
paddle.fluid.layers.assign (ArgSpec(args=['input', 'output'], varargs=None, keywords=None, defaults=(None,)), ('document', '98ce6e7c3659b8377c04cecfc72c2000'))
paddle.fluid.layers.fill_constant_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx', 'force_cpu'], varargs=None, keywords=None, defaults=(0, 0, False)), ('document', '2bb57637664173fee5f654e55896aec6'))
paddle.fluid.layers.fill_constant (ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None)), ('document', '
66e1e468666dd47e5b2715226cebeac0
'))
paddle.fluid.layers.fill_constant (ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None)), ('document', '
fa349c956a3e44297caf07a376eedaad
'))
paddle.fluid.layers.argmin (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '53629e27597e5dfb7020aac5bc639ebb'))
paddle.fluid.layers.argmax (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'd9a89fbedbaebd5f65897ac75ee636f3'))
paddle.fluid.layers.argsort (ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '8c7966eb4b37b2272a16717cac3a876c'))
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
30dda5a7
...
...
@@ -524,7 +524,10 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
The attribute `stop_gradient` of the created Tensor is setted to True.
Args:
shape(tuple|list): Shape of the Tensor to be created.
shape(list|tuple|Variable): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Variable, it should be an 1-D Tensor .
dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
be float16, float32, float64, int32, int64.
value(float): The constant value used to initialize the Tensor to be created.
...
...
@@ -544,9 +547,18 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
.. code-block:: python
import paddle.fluid as fluid
data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
#data1=[[5], [5]] data2=[[5], [5]]
# attr shape is a list which doesn't contain Variable Tensor.
data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
# data1=[[0], [0]] data2=[[5], [5]]
# attr shape is a list which contains Variable Tensor.
positive_2 = fluid.layers.fill_constant([1], "int32", 2)
data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]
# attr shape is an Variable Tensor.
shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
"""
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
if
convert_dtype
(
dtype
)
not
in
[
...
...
@@ -585,9 +597,17 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
def
_get_shape_tensor
(
list_shape
):
new_shape_tensor
=
[]
for
dim
in
list_shape
:
for
idx
,
dim
in
enumerate
(
list_shape
)
:
if
isinstance
(
dim
,
Variable
):
dim
.
stop_gradient
=
True
if
convert_dtype
(
dim
.
dtype
)
not
in
[
'int32'
,
'int64'
]:
raise
TypeError
(
"When type of 'shape' in fill_constant is list or tuple, "
"the data type of the element with type Variable must be int32 or int64, "
"but received the data type of shape[%d] is %s."
%
(
idx
,
convert_dtype
(
dim
.
dtype
)))
if
convert_dtype
(
dim
.
dtype
)
==
'int64'
:
dim
=
cast
(
x
=
dim
,
dtype
=
'int32'
)
new_shape_tensor
.
append
(
dim
)
else
:
temp_out
=
helper
.
create_variable_for_type_inference
(
'int32'
)
...
...
@@ -597,6 +617,12 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
if
isinstance
(
shape
,
Variable
):
shape
.
stop_gradient
=
True
if
convert_dtype
(
shape
.
dtype
)
not
in
[
'int32'
,
'int64'
]:
raise
TypeError
(
"When type of 'shape' in fill_constant is Variable, the data type of 'shape' must be int32 or int64, "
"but received %s."
%
(
convert_dtype
(
shape
.
dtype
)))
if
(
convert_dtype
(
shape
.
dtype
)
==
'int64'
):
shape
=
cast
(
shape
,
'int32'
)
inputs
[
"ShapeTensor"
]
=
shape
elif
isinstance
(
shape
,
(
list
,
tuple
)):
assert
len
(
shape
)
>
0
,
(
...
...
python/paddle/fluid/tests/unittests/test_fill_constant_op.py
浏览文件 @
30dda5a7
...
...
@@ -189,33 +189,47 @@ class TestFillConstantOp1_ShapeTensor(OpTest):
self
.
check_output
()
#
#
Test python API
# Test python API
class
TestFillConstantAPI
(
OpTest
):
def
test_api
(
self
):
positive_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
2
)
shape_tensor
=
fluid
.
layers
.
data
(
name
=
"shape_tensor"
,
shape
=
[
2
],
append_batch_size
=
False
,
dtype
=
"int32"
)
positive_2_int32
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
2
)
positive_2_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2
)
shape_tensor_int32
=
fluid
.
data
(
name
=
"shape_tensor_int32"
,
shape
=
[
2
],
dtype
=
"int32"
)
shape_tensor_int64
=
fluid
.
data
(
name
=
"shape_tensor_int64"
,
shape
=
[
2
],
dtype
=
"int64"
)
out_1
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
2
],
dtype
=
"float32"
,
value
=
1.1
)
out_2
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
positive_2
],
dtype
=
"float32"
,
value
=
1.1
)
shape
=
[
1
,
positive_2
_int32
],
dtype
=
"float32"
,
value
=
1.1
)
out_3
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor
,
dtype
=
"float32"
,
value
=
1.1
)
shape
=
[
1
,
positive_2_int64
],
dtype
=
"float32"
,
value
=
1.1
)
out_4
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
value
=
1.1
)
out_5
=
fluid
.
layers
.
fill_constant
(
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
value
=
1.1
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
res_1
,
res_2
,
res_3
=
exe
.
run
(
res_1
,
res_2
,
res_3
,
res_4
,
res_5
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"shape_tensor"
:
np
.
array
([
1
,
2
]).
astype
(
"int32"
)},
fetch_list
=
[
out_1
,
out_2
,
out_3
])
feed
=
{
"shape_tensor_int32"
:
np
.
array
([
1
,
2
]).
astype
(
"int32"
),
"shape_tensor_int64"
:
np
.
array
([
1
,
2
]).
astype
(
"int64"
),
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
])
assert
np
.
array_equal
(
res_1
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_2
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_3
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_4
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
assert
np
.
array_equal
(
res_5
,
np
.
full
([
1
,
2
],
1.1
,
dtype
=
"float32"
))
class
TestFillConstantOpError
(
OpTest
):
...
...
@@ -236,7 +250,8 @@ class TestFillConstantOpError(OpTest):
value
=
5
,
dtype
=
'int16'
,
out
=
x1
)
# The input dtype of fill_constant must be one of bool, float16,
# The argument dtype of fill_constant_op must be one of bool, float16,
#float32, float64, int32 or int64
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int32"
)
...
...
@@ -254,17 +269,35 @@ class TestFillConstantOpError(OpTest):
dtype
=
'float64'
,
out
=
x2
)
#
test Error of Shape
#
The argument shape's type of fill_constant_op must be list, tuple or Variable.
def
test_shape_type
():
fluid
.
layers
.
fill_constant
(
shape
=
1
,
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_type
)
# The argument shape's size of fill_constant_op must not be 0.
def
test_shape_size
():
fluid
.
layers
.
fill_constant
(
shape
=
[],
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
AssertionError
,
test_shape_size
)
# The shape dtype of fill_constant_op must be int32 or int64.
def
test_shape_tensor_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor"
,
shape
=
[
2
],
dtype
=
"float32"
)
fluid
.
layers
.
fill_constant
(
shape
=
shape
,
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_dtype
)
def
test_shape_tensor_list_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor_list"
,
shape
=
[
1
],
dtype
=
"bool"
)
fluid
.
layers
.
fill_constant
(
shape
=
[
shape
,
2
],
dtype
=
"float32"
,
value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_list_dtype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录