test_activation_op.py 108.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Q
qijun 已提交
16
import unittest
J
joejiong 已提交
17

Q
qijun 已提交
18
import numpy as np
C
Clementine 已提交
19
from scipy.special import expit, erf
J
joejiong 已提交
20

21
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.functional as F
J
joejiong 已提交
25 26
import paddle.fluid as fluid
import paddle.fluid.core as core
27
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
28

29 30
paddle.enable_static()

Q
qijun 已提交
31

32
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
48
class TestActivation(OpTest):
Q
qijun 已提交
49 50
    def setUp(self):
        self.op_type = "exp"
51
        self.init_dtype()
52
        self.init_kernel_type()
53

54
        np.random.seed(2049)
55 56 57 58 59
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
60 61

    def test_check_output(self):
P
phlrain 已提交
62 63
        self.check_output(check_eager=(hasattr(self, "python_api") and
                                       self.python_api != None))
Q
qijun 已提交
64 65

    def test_check_grad(self):
66 67
        if self.dtype == np.float16:
            return
P
phlrain 已提交
68 69 70 71 72
        self.check_grad(
            ['X'],
            'Out',
            check_eager=(hasattr(self, "python_api") and
                         self.python_api != None))
Q
qijun 已提交
73

74
    def init_dtype(self):
75
        self.dtype = np.float64
76

77 78 79
    def init_kernel_type(self):
        pass

Q
qijun 已提交
80

R
ronnywang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class TestExpm1(TestActivation):
    def setUp(self):
        self.op_type = "expm1"
        self.init_dtype()

        np.random.seed(2049)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.expm1(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpm1API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.out_ref = np.expm1(self.x)

        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.expm1(X)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x})
            for r in res:
                self.assertEqual(np.allclose(self.out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X = paddle.to_tensor(self.x)
            out = paddle.expm1(X)
            self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            X = paddle.fluid.data('X', self.shape, dtype='int32')
            self.assertRaises(TypeError, paddle.expm1, X)
        # The input dtype must be float16, float32, float64.


145 146 147
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
148
            np_x = np.array([0.1])
149
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
150
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
151 152
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
153 154 155
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
156 157 158 159 160 161 162

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
163 164 165 166 167
            # ROCM platform will fail in assertEqual
            if core.is_compiled_with_rocm():
                self.assertTrue(np.allclose(z, z_expected))
            else:
                self.assertEqual(z, z_expected)
168 169


C
chengduo 已提交
170
class TestSigmoid(TestActivation):
Q
qijun 已提交
171 172
    def setUp(self):
        self.op_type = "sigmoid"
173 174
        self.init_dtype()

175
        np.random.seed(1024)
176 177 178 179 180
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
181

182 183 184
    def init_dtype(self):
        self.dtype = np.float32

185
    def test_check_grad(self):
186 187 188 189
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSigmoidBF16(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


M
minghaoBD 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
class TestSilu(TestActivation):
    def setUp(self):
        self.op_type = "silu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = x / (np.exp(-x) + 1)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestSiluAPI(unittest.TestCase):
    # test paddle.nn.Silu, paddle.nn.functional.silu
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [11, 17])
            out1 = F.silu(x)
            m = paddle.nn.Silu()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.silu(x)
        m = paddle.nn.Silu()
        out2 = m(x)
        out_ref = self.x_np / (1 + np.exp(-self.x_np))
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.silu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
            self.assertRaises(TypeError, F.silu, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
            F.silu(x_fp16)


C
chengduo 已提交
285
class TestLogSigmoid(TestActivation):
286 287
    def setUp(self):
        self.op_type = "logsigmoid"
288 289
        self.init_dtype()

290
        np.random.seed(2048)
291 292 293
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

294
        self.inputs = {'X': x}
295
        self.outputs = {'Out': out}
296 297

    def test_check_grad(self):
298 299
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
300
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
301 302


303
class TestLogSigmoidAPI(unittest.TestCase):
304
    # test paddle.nn.LogSigmoid, paddle.nn.functional.log_sigmoid
305
    def setUp(self):
306
        np.random.seed(1024)
307
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
308
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
309 310 311
            else paddle.CPUPlace()

    def test_static_api(self):
312
        paddle.enable_static()
313
        with paddle.static.program_guard(paddle.static.Program()):
314
            x = paddle.fluid.data('X', [11, 17])
315
            out1 = F.log_sigmoid(x)
316 317 318 319 320 321
            m = paddle.nn.LogSigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in res:
322
            self.assertTrue(np.allclose(out_ref, r))
323 324 325 326

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
327
        out1 = F.log_sigmoid(x)
328 329 330 331
        m = paddle.nn.LogSigmoid()
        out2 = m(x)
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        for r in [out1, out2]:
332
            self.assertTrue(np.allclose(out_ref, r.numpy()))
333 334
        paddle.enable_static()

335
    def test_fluid_api(self):
336
        paddle.enable_static()
337
        with paddle.static.program_guard(paddle.static.Program()):
338
            x = paddle.fluid.data('X', [11, 17])
339 340 341 342 343 344
            out = paddle.fluid.layers.logsigmoid(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.log(1 / (1 + np.exp(-self.x_np)))
        self.assertTrue(np.allclose(out_ref, res[0]))

345
    def test_errors(self):
346
        paddle.enable_static()
347 348
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
349
            self.assertRaises(TypeError, F.log_sigmoid, 1)
350
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
351 352
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
353
            self.assertRaises(TypeError, F.log_sigmoid, x_int32)
354
            # support the input dtype is float16
J
joejiong 已提交
355 356
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
357
            F.log_sigmoid(x_fp16)
358 359


360
class TestTanh(TestActivation, TestParameter):
361 362
    def setUp(self):
        self.op_type = "tanh"
363
        self.init_dtype()
P
phlrain 已提交
364
        self.python_api = paddle.tanh
365
        np.random.seed(1024)
366 367 368 369 370
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
371 372

    def test_check_grad(self):
373 374
        if self.dtype == np.float16:
            return
P
phlrain 已提交
375
        self.check_grad(['X'], 'Out', check_eager=True)
376

377 378 379 380 381 382
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

383

W
WangXi 已提交
384 385 386 387
class TestTanhAPI(unittest.TestCase):
    # test paddle.tanh, paddle.nn.tanh, paddle.nn.functional.tanh
    def setUp(self):
        self.dtype = 'float32'
388
        np.random.seed(1024)
W
WangXi 已提交
389
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
J
joejiong 已提交
390
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
W
WangXi 已提交
391
            else paddle.CPUPlace()
392 393 394 395
        self.executed_api()

    def executed_api(self):
        self.tanh = F.tanh
W
WangXi 已提交
396 397

    def test_static_api(self):
398
        paddle.enable_static()
W
WangXi 已提交
399
        with paddle.static.program_guard(paddle.static.Program()):
400
            x = paddle.fluid.data('X', [10, 12], self.dtype)
401
            out1 = self.tanh(x)
W
WangXi 已提交
402 403 404 405 406 407 408 409 410 411
            th = paddle.nn.Tanh()
            out2 = th(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.tanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
412
        x = paddle.to_tensor(self.x_np)
W
WangXi 已提交
413 414 415 416 417 418 419 420 421 422
        out1 = F.tanh(x)
        out2 = paddle.tanh(x)
        th = paddle.nn.Tanh()
        out3 = th(x)
        out_ref = np.tanh(self.x_np)
        for r in [out1, out2, out3]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
423
        paddle.enable_static()
W
WangXi 已提交
424 425 426 427 428 429 430 431 432
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12], self.dtype)
            out = fluid.layers.tanh(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tanh(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
433
        paddle.enable_static()
W
WangXi 已提交
434 435
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
436
            self.assertRaises(TypeError, self.tanh, 1)
W
WangXi 已提交
437
            # The input dtype must be float16, float32.
J
joejiong 已提交
438 439
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
440
            self.assertRaises(TypeError, self.tanh, x_int32)
W
WangXi 已提交
441
            # support the input dtype is float16
J
joejiong 已提交
442 443
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
444 445 446 447 448 449 450
            self.tanh(x_fp16)


class TestTanhInplaceAPI(TestTanhAPI):
    # test paddle.tanh_
    def executed_api(self):
        self.tanh = paddle.tanh_
W
WangXi 已提交
451 452


453
class TestAtan(TestActivation, TestParameter):
454 455 456 457
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

P
phlrain 已提交
458
        self.python_api = paddle.atan
459
        np.random.seed(1024)
460 461 462 463 464 465 466 467 468
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
469
        self.check_grad(['X'], 'Out', check_eager=True)
470

W
WuHaobo 已提交
471 472 473 474 475 476 477 478 479 480 481
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

482 483 484 485 486 487 488 489
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

490

491 492 493 494
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()
P
phlrain 已提交
495
        self.python_api = paddle.sinh
496

497
        np.random.seed(1024)
498 499 500 501 502 503 504 505 506
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
507
        self.check_grad(['X'], 'Out', check_eager=True)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()
P
phlrain 已提交
568
        self.python_api = paddle.cosh
569

570
        np.random.seed(1024)
571 572 573 574 575 576 577 578 579
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
580
        self.check_grad(['X'], 'Out', check_eager=True)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


637 638 639 640 641 642
def ref_tanhshrink(x):
    out = x - np.tanh(x)
    return out


class TestTanhshrink(TestActivation):
K
Kavya Srinet 已提交
643 644
    def setUp(self):
        self.op_type = "tanh_shrink"
645 646
        self.init_dtype()

647
        np.random.seed(1024)
648 649
        x = np.random.uniform(10, 20, [10, 17]).astype(self.dtype)
        out = ref_tanhshrink(x)
650

651
        self.inputs = {'X': x}
652
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
653 654

    def test_check_grad(self):
655 656
        if self.dtype == np.float16:
            return
657
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
658

659

660 661 662
class TestTanhshrinkAPI(unittest.TestCase):
    # test paddle.nn.Tanhshrink, paddle.nn.functional.tanhshrink
    def setUp(self):
663
        np.random.seed(1024)
664
        self.x_np = np.random.uniform(10, 20, [10, 17]).astype(np.float64)
J
joejiong 已提交
665
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
666 667 668
            else paddle.CPUPlace()

    def test_static_api(self):
669
        paddle.enable_static()
670
        with paddle.static.program_guard(paddle.static.Program()):
671
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            out1 = F.tanhshrink(x)
            tanhshrink = paddle.nn.Tanhshrink()
            out2 = tanhshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_tanhshrink(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.tanhshrink(x)
        tanhshrink = paddle.nn.Tanhshrink()
        out2 = tanhshrink(x)
        out_ref = ref_tanhshrink(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
693
        paddle.enable_static()
694 695 696 697 698 699 700 701 702
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.tanh_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_tanhshrink(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
703
        paddle.enable_static()
704 705 706 707
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.tanhshrink, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
708 709
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
710 711
            self.assertRaises(TypeError, F.tanhshrink, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
712 713
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
714 715 716
            F.tanhshrink(x_fp16)


717 718 719 720 721 722
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
723
class TestHardShrink(TestActivation):
724 725
    def setUp(self):
        self.op_type = "hard_shrink"
726 727
        self.init_dtype()

728 729
        self.threshold = 0.5
        self.set_attrs()
730
        np.random.seed(1024)
Z
zhupengyang 已提交
731
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
732
        out = ref_hardshrink(x, self.threshold)
733

734
        self.attrs = {'threshold': self.threshold}
735
        self.inputs = {'X': x}
736
        self.outputs = {'Out': out}
737

738 739 740
    def set_attrs(self):
        pass

741
    def test_check_grad(self):
742 743
        if self.dtype == np.float16:
            return
744
        self.check_grad(['X'], 'Out')
745 746


747 748 749 750 751
class TestHardShrink_threshold_negative(TestHardShrink):
    def set_attrs(self):
        self.threshold = -0.1


752 753 754
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
755
        np.random.seed(1024)
756
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
757
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
758 759 760
            else paddle.CPUPlace()

    def test_static_api(self):
761
        paddle.enable_static()
762
        with paddle.static.program_guard(paddle.static.Program()):
763
            x = paddle.fluid.data('X', [10, 12])
764 765 766 767 768 769 770 771 772 773 774
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
775
        x = paddle.to_tensor(self.x_np)
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
792
        paddle.enable_static()
793 794 795 796 797 798 799 800
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

801
    def test_errors(self):
802
        paddle.enable_static()
803
        with paddle.static.program_guard(paddle.static.Program()):
804
            # The input type must be Variable.
805
            self.assertRaises(TypeError, F.hardshrink, 1)
806
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
807 808
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
809
            self.assertRaises(TypeError, F.hardshrink, x_int32)
810
            # support the input dtype is float16
J
joejiong 已提交
811 812
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
813
            F.hardshrink(x_fp16)
814 815


816 817 818 819 820 821 822 823 824 825 826
def ref_hardtanh(x, min=-1.0, max=1.0):
    out = np.copy(x)
    out[np.abs(x - min) < 0.005] = min + 0.02
    out[np.abs(x - max) < 0.005] = max + 0.02
    out = np.minimum(np.maximum(x, min), max)
    return out


class TestHardtanhAPI(unittest.TestCase):
    # test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
    def setUp(self):
827
        np.random.seed(1024)
828
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
829
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
830 831 832
            else paddle.CPUPlace()

    def test_static_api(self):
833
        paddle.enable_static()
834
        with paddle.static.program_guard(paddle.static.Program()):
835
            x = paddle.fluid.data('X', [10, 12])
836 837 838 839 840 841 842 843 844 845 846
            out1 = F.hardtanh(x)
            m = paddle.nn.Hardtanh()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardtanh(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
847
        x = paddle.to_tensor(self.x_np)
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        out1 = F.hardtanh(x)
        m = paddle.nn.Hardtanh()
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardtanh(x, -2.0, 2.0)
        m = paddle.nn.Hardtanh(-2.0, 2.0)
        out2 = m(x)
        out_ref = ref_hardtanh(self.x_np, -2.0, 2.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
864
        paddle.enable_static()
865 866 867 868
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.hardtanh, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
869 870
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
871 872
            self.assertRaises(TypeError, F.hardtanh, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
873 874
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
875 876 877
            F.hardtanh(x_fp16)


878 879 880 881 882 883 884 885
def ref_softshrink(x, threshold=0.5):
    out = np.copy(x)
    out = (out < -threshold) * (out + threshold) + (out > threshold) * (
        out - threshold)
    return out


class TestSoftshrink(TestActivation):
886 887
    def setUp(self):
        self.op_type = "softshrink"
888 889
        self.init_dtype()

890
        threshold = 0.8
891

892
        np.random.seed(1023)
893 894 895 896
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
        out = ref_softshrink(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"lambda": threshold}
897
        self.outputs = {'Out': out}
898 899

    def test_check_grad(self):
900 901
        if self.dtype == np.float16:
            return
902
        self.check_grad(['X'], 'Out')
903

904

905 906 907 908
class TestSoftshrinkAPI(unittest.TestCase):
    # test paddle.nn.Softshrink, paddle.nn.functional.softshrink
    def setUp(self):
        self.threshold = 0.8
909
        np.random.seed(1024)
910
        self.x_np = np.random.uniform(0.25, 10, [10, 12]).astype(np.float64)
J
joejiong 已提交
911
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
912 913 914
            else paddle.CPUPlace()

    def test_static_api(self):
915
        paddle.enable_static()
916
        with paddle.static.program_guard(paddle.static.Program()):
917
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            out1 = F.softshrink(x, self.threshold)
            softshrink = paddle.nn.Softshrink(self.threshold)
            out2 = softshrink(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softshrink(x, self.threshold)
        softshrink = paddle.nn.Softshrink(self.threshold)
        out2 = softshrink(x)
        out_ref = ref_softshrink(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
939
        paddle.enable_static()
940 941 942 943 944 945 946 947
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softshrink(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softshrink(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

948
    def test_errors(self):
949
        paddle.enable_static()
950
        with paddle.static.program_guard(paddle.static.Program()):
951
            # The input type must be Variable.
952
            self.assertRaises(TypeError, F.softshrink, 1)
953
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
954 955
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
956
            self.assertRaises(TypeError, F.softshrink, x_int32)
957
            # The threshold must be no less than zero
J
joejiong 已提交
958 959
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[12, 10], dtype='float32')
960
            self.assertRaises(ValueError, F.softshrink, x_fp32, -1.0)
961
            # support the input dtype is float16
J
joejiong 已提交
962 963
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
964
            F.softshrink(x_fp16)
965 966


967
class TestSqrt(TestActivation, TestParameter):
968 969
    def setUp(self):
        self.op_type = "sqrt"
970 971
        self.init_dtype()

972
        np.random.seed(1023)
973 974 975 976 977
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
978 979

    def test_check_grad(self):
980 981
        if self.dtype == np.float16:
            return
982
        self.check_grad(['X'], 'Out')
983

984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSqrtBF16(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.init_dtype()

        np.random.seed(1023)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.sqrt(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


Z
zhoukunsheng 已提交
1013 1014 1015 1016 1017
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

1018
        np.random.seed(1024)
Z
zhupengyang 已提交
1019
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
1031
class TestAbs(TestActivation):
1032 1033
    def setUp(self):
        self.op_type = "abs"
1034 1035
        self.init_dtype()

1036
        np.random.seed(1024)
1037
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
1038
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
1039
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
1040
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
1041 1042
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
1043 1044 1045 1046
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1047 1048

    def test_check_grad(self):
1049 1050
        if self.dtype == np.float16:
            return
H
hong 已提交
1051
        self.check_grad(['X'], 'Out', check_eager=True)
1052

1053

C
chengduo 已提交
1054
class TestCeil(TestActivation):
D
dzhwinter 已提交
1055 1056
    def setUp(self):
        self.op_type = "ceil"
1057 1058
        self.init_dtype()

1059
        np.random.seed(1024)
Z
zhupengyang 已提交
1060
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1061 1062 1063 1064
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1065

D
dzhwinter 已提交
1066
    # The same reason with TestFloor
C
chengduo 已提交
1067
    def test_check_grad(self):
1068 1069 1070
        pass


C
chengduo 已提交
1071
class TestFloor(TestActivation):
D
dzhwinter 已提交
1072 1073
    def setUp(self):
        self.op_type = "floor"
1074 1075
        self.init_dtype()

1076
        np.random.seed(1024)
Z
zhupengyang 已提交
1077
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1078 1079 1080 1081
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1082

D
dzhwinter 已提交
1083
    # the gradient on floor, ceil, round is undefined.
1084
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
1085 1086
    # The same reason with TestFloor
    def test_check_grad(self):
1087 1088 1089
        pass


C
chengduo 已提交
1090
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
1091 1092
    def setUp(self):
        self.op_type = "cos"
1093
        self.init_dtype()
P
phlrain 已提交
1094
        self.python_api = paddle.cos
1095

1096
        np.random.seed(1024)
Z
zhupengyang 已提交
1097
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1098 1099 1100 1101
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
1102 1103

    def test_check_grad(self):
1104 1105
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1106
        self.check_grad(['X'], 'Out', check_eager=True)
C
add sin  
chengduoZH 已提交
1107

1108

J
joejiong 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
class TestTan(TestActivation):
    def setUp(self):
        np.random.seed(1024)
        self.op_type = "tan"
        self.init_dtype()
        self.dtype = 'float32'
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

        out = np.tan(self.x_np)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x_np)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out_test = paddle.tan(x)
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, out_test.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12], self.dtype)
            out = paddle.tan(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = np.tan(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = paddle.to_tensor(input_x)
            var.stop_gradient = False
            loss = paddle.tan(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


1160 1161 1162 1163
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()
P
phlrain 已提交
1164
        self.python_api = paddle.acos
1165

1166
        np.random.seed(1024)
Z
zhupengyang 已提交
1167
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1168 1169 1170 1171 1172 1173 1174 1175
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1176
        self.check_grad(['X'], 'Out', check_eager=True)
1177 1178


1179
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
1180 1181
    def setUp(self):
        self.op_type = "sin"
1182
        self.init_dtype()
P
phlrain 已提交
1183
        self.python_api = paddle.sin
1184

1185
        np.random.seed(1024)
Z
zhupengyang 已提交
1186
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1187 1188 1189 1190
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
1191 1192

    def test_check_grad(self):
1193 1194
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1195
        self.check_grad(['X'], 'Out', check_eager=True)
C
add cos  
chengduoZH 已提交
1196 1197


1198 1199 1200 1201
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()
P
phlrain 已提交
1202
        self.python_api = paddle.asin
1203

1204
        np.random.seed(2048)
Z
zhupengyang 已提交
1205
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
1206 1207 1208 1209 1210 1211 1212 1213
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1214
        self.check_grad(['X'], 'Out', check_eager=True)
1215 1216


X
xiaoting 已提交
1217 1218 1219 1220
class TestAcosh(TestActivation):
    def setUp(self):
        self.op_type = "acosh"
        self.init_dtype()
P
phlrain 已提交
1221
        self.python_api = paddle.acosh
X
xiaoting 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

        np.random.seed(1024)
        x = np.random.uniform(2, 3, [10, 12]).astype(self.dtype)
        out = np.arccosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1233
        self.check_grad(['X'], 'Out', check_eager=True)
X
xiaoting 已提交
1234 1235 1236 1237 1238 1239


class TestAsinh(TestActivation):
    def setUp(self):
        self.op_type = "asinh"
        self.init_dtype()
P
phlrain 已提交
1240
        self.python_api = paddle.asinh
X
xiaoting 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

        np.random.seed(1024)
        x = np.random.uniform(1, 2, [10, 12]).astype(self.dtype)
        out = np.arcsinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1252
        self.check_grad(['X'], 'Out', check_eager=True)
X
xiaoting 已提交
1253 1254 1255 1256 1257 1258


class TestAtanh(TestActivation):
    def setUp(self):
        self.op_type = "atanh"
        self.init_dtype()
P
phlrain 已提交
1259
        self.python_api = paddle.atanh
X
xiaoting 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

        np.random.seed(400)
        x = np.random.uniform(-0.9, 0.9, [10, 12]).astype(self.dtype)
        out = np.arctanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
P
phlrain 已提交
1271
        self.check_grad(['X'], 'Out', check_eager=True)
X
xiaoting 已提交
1272 1273


C
chengduo 已提交
1274
class TestRound(TestActivation):
D
dzhwinter 已提交
1275 1276
    def setUp(self):
        self.op_type = "round"
1277 1278
        self.init_dtype()

1279
        np.random.seed(1024)
Z
zhupengyang 已提交
1280
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
1281 1282 1283 1284
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
1285

C
chengduo 已提交
1286
    def test_check_grad(self):
1287 1288 1289
        pass


C
chengduo 已提交
1290
class TestRelu(TestActivation):
1291
    def setUp(self):
Q
qijun 已提交
1292
        self.op_type = "relu"
K
Kexin Zhao 已提交
1293 1294
        self.init_dtype()

1295
        np.random.seed(1024)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        if self.dtype == np.uint16:
            x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = convert_float_to_uint16(np.maximum(x, 0))
            self.inputs = {'X': convert_float_to_uint16(x)}
        else:
            x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
            # The same reason with TestAbs
            x[np.abs(x) < 0.005] = 0.02
            out = np.maximum(x, 0)
            self.inputs = {'X': x}
K
Kexin Zhao 已提交
1308 1309

        self.outputs = {'Out': out}
1310 1311

    def test_check_grad(self):
K
Kexin Zhao 已提交
1312 1313
        if self.dtype == np.float16:
            return
1314
        self.check_grad(['X'], 'Out')
A
Adam 已提交
1315 1316


1317 1318 1319
class TestReluAPI(unittest.TestCase):
    # test paddle.nn.ReLU, paddle.nn.functional.relu
    def setUp(self):
1320
        np.random.seed(1024)
1321
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1322
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1323
            else paddle.CPUPlace()
1324 1325 1326 1327
        self.executed_api()

    def executed_api(self):
        self.relu = F.relu
1328 1329

    def test_static_api(self):
1330
        paddle.enable_static()
1331
        with paddle.static.program_guard(paddle.static.Program()):
1332
            x = paddle.fluid.data('X', [10, 12])
1333
            out1 = self.relu(x)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
            m = paddle.nn.ReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = np.maximum(self.x_np, 0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.ReLU()
1346 1347
        out1 = m(x)
        out2 = self.relu(x)
1348 1349 1350 1351 1352
        out_ref = np.maximum(self.x_np, 0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1353
    def test_errors(self):
1354
        paddle.enable_static()
1355
        with paddle.static.program_guard(paddle.static.Program()):
1356
            # The input type must be Variable.
1357
            self.assertRaises(TypeError, self.relu, 1)
1358
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1359 1360
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1361
            self.assertRaises(TypeError, self.relu, x_int32)
1362
            # support the input dtype is float16
J
joejiong 已提交
1363 1364
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1365 1366 1367 1368 1369 1370 1371
            self.relu(x_fp16)


class TestReluInplaceAPI(TestReluAPI):
    # test paddle.nn.functional.relu_
    def executed_api(self):
        self.relu = F.relu_
1372 1373


1374 1375 1376 1377 1378 1379
def ref_leaky_relu(x, alpha=0.01):
    out = np.copy(x)
    out[out < 0] *= alpha
    return out


A
Adam 已提交
1380
class TestLeakyRelu(TestActivation):
1381 1382 1383
    def get_alpha(self):
        return 0.02

A
Adam 已提交
1384 1385 1386
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()
1387
        alpha = self.get_alpha()
A
Adam 已提交
1388

1389
        np.random.seed(1024)
A
Adam 已提交
1390 1391
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
1392 1393
        x[np.abs(x) < 0.005] = 0.05
        out = ref_leaky_relu(x, alpha)
A
Adam 已提交
1394

1395
        self.inputs = {'X': x}
A
Adam 已提交
1396
        self.outputs = {'Out': out}
1397
        self.attrs = {'alpha': alpha}
A
Adam 已提交
1398 1399 1400 1401

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1402
        self.check_grad(['X'], 'Out')
1403 1404


1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
class TestLeakyReluAlpha1(TestLeakyRelu):
    def get_alpha(self):
        return 2


class TestLeakyReluAlpha2(TestLeakyRelu):
    def get_alpha(self):
        return -0.01


class TestLeakyReluAlpha3(TestLeakyRelu):
    def get_alpha(self):
        return -2.0


class TestLeakyReluAPI(unittest.TestCase):
    # test paddle.nn.LeakyReLU, paddle.nn.functional.leaky_relu,
    # fluid.layers.leaky_relu
    def setUp(self):
1424
        np.random.seed(1024)
1425
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
J
joejiong 已提交
1426
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1427 1428 1429
            else paddle.CPUPlace()

    def test_static_api(self):
1430
        paddle.enable_static()
1431
        with paddle.static.program_guard(paddle.static.Program()):
1432
            x = paddle.fluid.data('X', [10, 12])
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
            out1 = F.leaky_relu(x)
            m = paddle.nn.LeakyReLU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_leaky_relu(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
Z
Zhou Wei 已提交
1444
        x = paddle.to_tensor(self.x_np)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        out1 = F.leaky_relu(x)
        m = paddle.nn.LeakyReLU()
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.leaky_relu(x, 0.6)
        m = paddle.nn.LeakyReLU(0.6)
        out2 = m(x)
        out_ref = ref_leaky_relu(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1461
        paddle.enable_static()
1462 1463 1464 1465 1466 1467 1468 1469
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.leaky_relu(x, 0.01)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_leaky_relu(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1470
    def test_errors(self):
1471
        paddle.enable_static()
1472
        with paddle.static.program_guard(paddle.static.Program()):
1473
            # The input type must be Variable.
1474
            self.assertRaises(TypeError, F.leaky_relu, 1)
1475
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1476 1477
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1478 1479
            self.assertRaises(TypeError, F.leaky_relu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1480 1481
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1482
            F.leaky_relu(x_fp16)
1483 1484


1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
1495 1496 1497
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
1498
        approximate = True
1499
        np.random.seed(1024)
1500 1501
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
1502

1503
        self.inputs = {'X': x}
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
1518
        np.random.seed(2048)
C
Clementine 已提交
1519
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1520
        out = gelu(x, approximate)
C
Clementine 已提交
1521

1522
        self.inputs = {'X': x}
C
Clementine 已提交
1523
        self.outputs = {'Out': out}
1524
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
1525 1526 1527 1528

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1529
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
1530 1531


1532 1533 1534
class TestGELUAPI(unittest.TestCase):
    # test paddle.nn.GELU, paddle.nn.functional.gelu
    def setUp(self):
1535
        np.random.seed(1024)
1536
        self.x_np = np.random.uniform(-1, 1, [11, 17]).astype('float32')
J
joejiong 已提交
1537
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1538 1539 1540
            else paddle.CPUPlace()

    def test_static_api(self):
1541
        paddle.enable_static()
1542
        with paddle.static.program_guard(paddle.static.Program()):
1543
            x = paddle.fluid.data('X', [11, 17])
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
            out1 = F.gelu(x)
            m = paddle.nn.GELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = gelu(self.x_np, False)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.gelu(x)
        m = paddle.nn.GELU()
        out2 = m(x)
        out_ref = gelu(self.x_np, False)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.gelu(x, True)
        m = paddle.nn.GELU(True)
        out2 = m(x)
        out_ref = gelu(self.x_np, True)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
1572
        paddle.enable_static()
1573 1574 1575 1576
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.gelu, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1577 1578
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[11, 17], dtype='int32')
1579 1580
            self.assertRaises(TypeError, F.gelu, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
1581 1582
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[11, 17], dtype='float16')
1583 1584 1585
            F.gelu(x_fp16)


C
chengduo 已提交
1586
class TestBRelu(TestActivation):
1587 1588
    def setUp(self):
        self.op_type = "brelu"
1589 1590
        self.init_dtype()

1591
        np.random.seed(1024)
Z
zhupengyang 已提交
1592
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1593 1594
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
1595 1596
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
1597
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
1598 1599 1600
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
1601 1602 1603

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
1604
        self.outputs = {'Out': t}
1605 1606

    def test_check_grad(self):
1607 1608
        if self.dtype == np.float16:
            return
1609
        self.check_grad(['X'], 'Out')
1610

1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
class TestBreluAPI(unittest.TestCase):
    # test paddle.fluid.layers.brelu
    def setUp(self):
        np.random.seed(1024)
        self.t_min = 0.
        self.t_max = 24.
        self.x_np = np.random.uniform(-1, 30, [10, 12]).astype('float32')
        self.out_ref = np.copy(self.x_np)
        self.out_ref[self.out_ref < self.t_min] = self.t_min
        self.out_ref[self.out_ref > self.t_max] = self.t_max
        self.out_ref = self.out_ref.astype('float32')
J
joejiong 已提交
1623
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
            else paddle.CPUPlace()

    def test_fluid_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', [10, 12])
            out = paddle.fluid.layers.brelu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
            self.assertTrue(np.allclose(self.out_ref, res[0]))

            paddle.disable_static(self.place)
            x = paddle.to_tensor(self.x_np)
            out = paddle.fluid.layers.brelu(x)
            self.assertTrue(np.allclose(self.out_ref, out.numpy()))
            paddle.enable_static()

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


1653 1654 1655 1656 1657 1658 1659
def ref_relu6(x, threshold=6.0):
    out = np.copy(x)
    out[np.abs(x - threshold) < 0.005] = threshold + 0.02
    out = np.minimum(np.maximum(x, 0), threshold)
    return out


C
chengduo 已提交
1660
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
1661
    def setUp(self):
1662
        self.op_type = "relu6"
1663 1664
        self.init_dtype()

1665
        np.random.seed(1024)
Z
zhupengyang 已提交
1666
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
1667
        x[np.abs(x) < 0.005] = 0.02
1668
        out = ref_relu6(x)
1669

1670 1671
        self.inputs = {'X': x}
        self.attrs = {'threshold': 6.0}
1672
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
1673

1674 1675 1676
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1677
        self.check_grad(['X'], 'Out')
1678 1679


1680 1681 1682
class TestRelu6API(unittest.TestCase):
    # test paddle.nn.ReLU6, paddle.nn.functional.relu6
    def setUp(self):
1683
        np.random.seed(1024)
1684 1685
        self.x_np = np.random.uniform(-1, 10, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
1686
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1687 1688 1689
            else paddle.CPUPlace()

    def test_static_api(self):
1690
        paddle.enable_static()
1691
        with paddle.static.program_guard(paddle.static.Program()):
1692
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            out1 = F.relu6(x)
            relu6 = paddle.nn.ReLU6()
            out2 = relu6(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_relu6(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.relu6(x)
        relu6 = paddle.nn.ReLU6()
        out2 = relu6(x)
        out_ref = ref_relu6(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
1714
        paddle.enable_static()
1715 1716 1717 1718 1719 1720 1721 1722
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.relu6(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_relu6(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

1723
    def test_errors(self):
1724
        paddle.enable_static()
1725
        with paddle.static.program_guard(paddle.static.Program()):
1726
            # The input type must be Variable.
1727
            self.assertRaises(TypeError, F.relu6, 1)
1728
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1729 1730
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1731
            self.assertRaises(TypeError, F.relu6, x_int32)
1732
            # support the input dtype is float16
J
joejiong 已提交
1733 1734
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1735
            F.relu6(x_fp16)
1736 1737


1738 1739 1740 1741 1742
def ref_hardswish(x, threshold=6.0, scale=6.0, offset=3.0):
    return (x * np.minimum(np.maximum(x + offset, 0.), threshold) /
            scale).astype(x.dtype)


H
huangjun12 已提交
1743 1744 1745 1746 1747
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

J
jakpiase 已提交
1748 1749
        skip_check_grad_ci(reason="not implemented yet")

1750
        np.random.seed(1024)
Z
zhupengyang 已提交
1751
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
1752 1753 1754 1755 1756 1757
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
1758
        out = ref_hardswish(x, threshold, scale, offset)
H
huangjun12 已提交
1759

1760
        self.inputs = {'X': x}
H
huangjun12 已提交
1761 1762 1763 1764 1765 1766
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
J
jakpiase 已提交
1767 1768

        return  # not implemented yet
1769
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
1770 1771


1772 1773 1774 1775
class TestHardswishAPI(unittest.TestCase):
    # test paddle.nn.Hardswish, paddle.nn.functional.hardswish
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
1776
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1777 1778 1779 1780
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
1781
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            out1 = F.hardswish(x)
            m = paddle.nn.Hardswish()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardswish(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardswish(x)
        m = paddle.nn.Hardswish()
        out2 = m(x)
        out_ref = ref_hardswish(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
1800
        paddle.enable_static()
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardswish(self.x_np)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_swish(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
1819
            # The input type must be Variable.
1820
            self.assertRaises(TypeError, F.hardswish, 1)
1821
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1822 1823
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
1824
            self.assertRaises(TypeError, F.hardswish, x_int32)
1825
            # support the input dtype is float16
J
joejiong 已提交
1826 1827
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
1828
            F.hardswish(x_fp16)
1829 1830


C
chengduo 已提交
1831
class TestSoftRelu(TestActivation):
1832 1833
    def setUp(self):
        self.op_type = "soft_relu"
1834 1835
        self.init_dtype()

1836
        np.random.seed(4096)
1837
        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
1838
        threshold = 2.0
Q
qijun 已提交
1839 1840
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
1841
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
1842 1843 1844
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
1845 1846 1847 1848 1849
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
1850 1851

    def test_check_grad(self):
1852 1853
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1854
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
1855

1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


1870
def elu(x, alpha):
Z
zhupengyang 已提交
1871
    out_ref = np.where(x > 0, x, alpha * (np.exp(x) - 1))
1872 1873 1874
    return out_ref.astype(x.dtype)


C
chengduo 已提交
1875
class TestELU(TestActivation):
1876 1877
    def setUp(self):
        self.op_type = "elu"
1878 1879
        self.init_dtype()

1880
        np.random.seed(1024)
Z
zhupengyang 已提交
1881
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
Z
zhupengyang 已提交
1882
        alpha = self.get_alpha()
1883
        out = elu(x, alpha)
1884 1885 1886 1887
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
1888
        self.outputs = {'Out': out}
1889 1890

    def test_check_grad(self):
1891 1892
        if self.dtype == np.float16:
            return
1893
        self.check_grad(['X'], 'Out')
1894

Z
zhupengyang 已提交
1895 1896 1897 1898 1899 1900 1901 1902
    def get_alpha(self):
        return 1.


class TestELUAlpha(TestELU):
    def get_alpha(self):
        return -0.2

1903

1904 1905 1906
class TestELUAPI(unittest.TestCase):
    # test paddle.nn.ELU, paddle.nn.functional.elu
    def setUp(self):
1907
        np.random.seed(1024)
1908
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
J
joejiong 已提交
1909
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
1910
            else paddle.CPUPlace()
1911 1912 1913 1914
        self.executed_api()

    def executed_api(self):
        self.elu = F.elu
1915 1916

    def test_static_api(self):
1917
        paddle.enable_static()
1918
        with paddle.static.program_guard(paddle.static.Program()):
1919
            x = paddle.fluid.data('X', [10, 12])
1920
            out1 = self.elu(x)
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
            m = paddle.nn.ELU()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = elu(self.x_np, 1.0)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
1932 1933
        out1 = self.elu(x)
        x = paddle.to_tensor(self.x_np)
1934 1935 1936 1937 1938 1939
        m = paddle.nn.ELU()
        out2 = m(x)
        out_ref = elu(self.x_np, 1.0)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

1940 1941
        out1 = self.elu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
1942 1943 1944 1945 1946 1947 1948
        m = paddle.nn.ELU(0.2)
        out2 = m(x)
        out_ref = elu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

1949
    def test_errors(self):
1950
        paddle.enable_static()
1951 1952
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
1953
            self.assertRaises(TypeError, self.elu, 1)
1954
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
1955 1956
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
1957
            self.assertRaises(TypeError, self.elu, x_int32)
1958
            # support the input dtype is float16
J
joejiong 已提交
1959 1960
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
1961 1962 1963
            self.elu(x_fp16)


Z
zhupengyang 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
class TestELUInplaceAPI(TestELUAPI):
    # test paddle.nn.functional.elu_
    def executed_api(self):
        self.elu = F.elu_

    def test_alpha_error(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        self.assertRaises(Exception, F.elu_, x, -0.2)
        paddle.enable_static()


1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
def celu(x, alpha):
    out_ref = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x / alpha) - 1))
    return out_ref.astype(x.dtype)


class TestCELU(TestActivation):
    def setUp(self):
        self.op_type = "celu"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
        alpha = 1.5
        out = celu(x, alpha)
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestCELUAPI(unittest.TestCase):
    # test paddle.nn.CELU, paddle.nn.functional.celu
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-3, 3, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        self.executed_api()

    def executed_api(self):
        self.celu = F.celu

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out1 = self.celu(x, 1.5)
            m = paddle.nn.CELU(1.5)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = celu(self.x_np, 1.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = self.celu(x, 1.5)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(1.5)
        out2 = m(x)
        out_ref = celu(self.x_np, 1.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = self.celu(x, 0.2)
        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.CELU(0.2)
        out2 = m(x)
        out_ref = celu(self.x_np, 0.2)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, self.celu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[10, 12], dtype='int32')
            self.assertRaises(TypeError, self.celu, x_int32)
            # The alpha must be not equal 0
            x_fp32 = paddle.fluid.data(
                name='x_fp32', shape=[10, 12], dtype='float32')
            self.assertRaises(ZeroDivisionError, F.celu, x_fp32, 0)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[10, 12], dtype='float16')
            self.celu(x_fp16)


C
chengduo 已提交
2064
class TestReciprocal(TestActivation):
Q
qijun 已提交
2065 2066
    def setUp(self):
        self.op_type = "reciprocal"
2067 2068
        self.init_dtype()

2069
        np.random.seed(1024)
2070 2071 2072 2073 2074
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2075 2076

    def test_check_grad(self):
2077 2078
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
2079
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
2080 2081


C
chengduo 已提交
2082
class TestLog(TestActivation):
Q
qijun 已提交
2083 2084
    def setUp(self):
        self.op_type = "log"
2085 2086
        self.init_dtype()

2087
        np.random.seed(1024)
2088 2089 2090 2091 2092
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2093 2094

    def test_check_grad(self):
2095 2096
        if self.dtype == np.float16:
            return
2097
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

2108

J
joejiong 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
class TestLog2(TestActivation):
    def setUp(self):
        self.op_type = "log2"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log2(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log2, in1)
        self.assertRaises(TypeError, paddle.log2, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log2(data_x)
            exe = paddle.static.Executor(place=fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log2(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log2(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log2(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


J
joejiong 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
class TestLog10(TestActivation):
    def setUp(self):
        self.op_type = "log10"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log10(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_error(self):
        in1 = paddle.static.data(name="in1", shape=[11, 17], dtype="int32")
        in2 = paddle.static.data(name="in2", shape=[11, 17], dtype="int64")

        self.assertRaises(TypeError, paddle.log10, in1)
        self.assertRaises(TypeError, paddle.log10, in2)

    def test_api(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.static.data(
                name="data_x", shape=[11, 17], dtype="float64")

            out1 = paddle.log10(data_x)
            exe = paddle.static.Executor(place=paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res1 = exe.run(paddle.static.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
        expected_res = np.log10(input_x)
        self.assertTrue(np.allclose(res1, expected_res))

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = paddle.to_tensor(np_x)
            z = paddle.log10(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log10(np_x))
        self.assertTrue(np.allclose(np_z, z_expected))


2207 2208 2209 2210 2211
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

2212
        np.random.seed(1024)
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
2236 2237 2238
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
2239
        expected_res = np.log1p(input_x)
2240
        self.assertTrue(np.allclose(res1, expected_res))
2241 2242 2243 2244 2245 2246 2247 2248

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
2249
        self.assertTrue(np.allclose(np_z, z_expected))
2250 2251


C
chengduo 已提交
2252
class TestSquare(TestActivation):
Q
qijun 已提交
2253 2254
    def setUp(self):
        self.op_type = "square"
2255 2256
        self.init_dtype()

2257
        np.random.seed(1024)
2258 2259 2260 2261 2262
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
2263 2264

    def test_check_grad(self):
2265 2266
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
2267
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
2268

2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSquareBF16(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(0.1, 1, [11, 17]).astype(np.float32)
        out = np.square(x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.5)


C
chengduo 已提交
2298
class TestPow(TestActivation):
2299 2300
    def setUp(self):
        self.op_type = "pow"
2301 2302
        self.init_dtype()

2303
        np.random.seed(1024)
2304 2305 2306 2307
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
2308
        self.attrs = {'factor': 3.0}
2309
        self.outputs = {'Out': out}
2310 2311

    def test_check_grad(self):
2312 2313
        if self.dtype == np.float16:
            return
2314
        self.check_grad(['X'], 'Out')
2315

2316

2317 2318 2319 2320 2321
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

2322
        np.random.seed(1024)
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
2340
        self.check_grad(['X'], 'Out')
2341 2342 2343 2344 2345

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
2346 2347 2348 2349 2350
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
2351 2352 2353 2354 2355

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
2356 2357 2358
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
2359 2360

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
2361
        res_1, res_2, res, res_6 = exe.run(
2362 2363
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
2364
            fetch_list=[out_1, out_2, res, out_6])
2365

2366 2367 2368
        assert np.allclose(res_1, np.power(input, 2))
        assert np.allclose(res_2, np.power(input, 3))
        assert np.allclose(res_6, np.power(input, 3))
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

2393

2394 2395 2396 2397 2398
def ref_stanh(x, scale_a=0.67, scale_b=1.7159):
    out = scale_b * np.tanh(x * scale_a)
    return out


C
chengduo 已提交
2399
class TestSTanh(TestActivation):
2400 2401 2402 2403 2404 2405
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

2406 2407
    def setUp(self):
        self.op_type = "stanh"
2408
        self.init_dtype()
2409 2410
        scale_a = self.get_scale_a()
        scale_b = self.get_scale_b()
2411

2412
        np.random.seed(1024)
2413
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
2414 2415
        # The same reason with TestAbs
        out = ref_stanh(x, scale_a, scale_b)
2416

2417
        self.inputs = {'X': x}
2418
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
2419
        self.outputs = {'Out': out}
2420

Q
qijun 已提交
2421
    def test_check_grad(self):
2422 2423
        if self.dtype == np.float16:
            return
2424
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
2425

2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
class TestSTanhScaleA(TestSTanh):
    def get_scale_a(self):
        return 2.0


class TestSTanhScaleB(TestSTanh):
    def get_scale_b(self):
        return 0.5


class TestSTanhAPI(unittest.TestCase):
    # test paddle.nn.stanh
    def get_scale_a(self):
        return 0.67

    def get_scale_b(self):
        return 1.7159

    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.scale_a = self.get_scale_a()
        self.scale_b = self.get_scale_b()
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12])
            out = paddle.stanh(x, self.scale_a, self.scale_b)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.stanh(x, self.scale_a, self.scale_b)
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        for r in [out]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.stanh(x, self.scale_a, self.scale_b)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_stanh(self.x_np, self.scale_a, self.scale_b)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2483
    def test_errors(self):
2484 2485
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2486
            # The input type must be Variable.
2487
            self.assertRaises(TypeError, paddle.stanh, 1)
2488
            # The input dtype must be float16, float32, float64.
2489 2490 2491
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, paddle.stanh, x_int32)
2492
            # support the input dtype is float16
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            paddle.stanh(x_fp16)


class TestSTanhAPIScaleA(TestSTanhAPI):
    def get_scale_a(self):
        return 2.0


class TestSTanhAPIScaleB(TestSTanhAPI):
    def get_scale_b(self):
        return 0.5
2506 2507


2508 2509 2510 2511 2512 2513 2514
def ref_softplus(x, beta=1, threshold=20):
    x_beta = beta * x
    out = np.select([x_beta <= threshold, x_beta > threshold],
                    [np.log(1 + np.exp(x_beta)) / beta, x])
    return out


C
chengduo 已提交
2515
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
2516 2517
    def setUp(self):
        self.op_type = "softplus"
2518 2519
        self.init_dtype()

2520 2521
        beta = 2
        threshold = 15
2522

2523
        np.random.seed(1024)
2524 2525 2526 2527
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': x}
        self.attrs = {'beta': beta, "threshold": threshold}
2528
        self.outputs = {'Out': out}
K
kexinzhao 已提交
2529 2530

    def test_check_grad(self):
2531 2532
        if self.dtype == np.float16:
            return
2533
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
2534

2535

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftplusBF16(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.init_dtype()

        beta = 2
        threshold = 15

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(np.float32)
        out = ref_softplus(x, beta, threshold)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'beta': beta, "threshold": threshold}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', numeric_grad_delta=0.05)


2565 2566 2567 2568 2569
class TestSoftplusAPI(unittest.TestCase):
    # test paddle.nn.Softplus, paddle.nn.functional.softplus
    def setUp(self):
        self.beta = 2
        self.threshold = 15
2570
        np.random.seed(1024)
2571
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2572
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2573 2574 2575
            else paddle.CPUPlace()

    def test_static_api(self):
2576
        paddle.enable_static()
2577
        with paddle.static.program_guard(paddle.static.Program()):
2578
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
            out1 = F.softplus(x, self.beta, self.threshold)
            softplus = paddle.nn.Softplus(self.beta, self.threshold)
            out2 = softplus(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softplus(x, self.beta, self.threshold)
        softplus = paddle.nn.Softplus(self.beta, self.threshold)
        out2 = softplus(x)
        out_ref = ref_softplus(self.x_np, self.beta, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2600
        paddle.enable_static()
2601 2602 2603 2604 2605 2606 2607 2608 2609
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softplus(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softplus(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2610
        paddle.enable_static()
2611 2612 2613 2614
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softplus, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2615 2616
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2617 2618
            self.assertRaises(TypeError, F.softplus, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2619 2620
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2621 2622 2623 2624 2625 2626 2627 2628
            F.softplus(x_fp16)


def ref_softsign(x):
    out = np.divide(x, 1 + np.abs(x))
    return out


C
chengduo 已提交
2629
class TestSoftsign(TestActivation):
2630 2631
    def setUp(self):
        self.op_type = "softsign"
2632 2633
        self.init_dtype()

2634
        np.random.seed(1024)
2635 2636 2637
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_softsign(x)
        self.inputs = {'X': x}
2638
        self.outputs = {'Out': out}
2639 2640

    def test_check_grad(self):
2641 2642
        if self.dtype == np.float16:
            return
2643
        self.check_grad(['X'], 'Out')
2644 2645


2646 2647 2648
class TestSoftsignAPI(unittest.TestCase):
    # test paddle.nn.Softsign, paddle.nn.functional.softsign
    def setUp(self):
2649
        np.random.seed(1024)
2650
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2651
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2652 2653 2654
            else paddle.CPUPlace()

    def test_static_api(self):
2655
        paddle.enable_static()
2656
        with paddle.static.program_guard(paddle.static.Program()):
2657
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
            out1 = F.softsign(x)
            softsign = paddle.nn.Softsign()
            out2 = softsign(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softsign(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.softsign(x)
        softsign = paddle.nn.Softsign()
        out2 = softsign(x)
        out_ref = ref_softsign(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
2679
        paddle.enable_static()
2680 2681 2682 2683 2684 2685 2686 2687 2688
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.softsign(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_softsign(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
2689
        paddle.enable_static()
2690 2691 2692 2693
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softsign, 1)
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2694 2695
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2696 2697
            self.assertRaises(TypeError, F.softsign, x_int32)
            # support the input dtype is float16
J
joejiong 已提交
2698 2699
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2700 2701 2702
            F.softsign(x_fp16)


2703 2704 2705 2706 2707
def ref_thresholded_relu(x, threshold=1.0):
    out = (x > threshold) * x
    return out


C
chengduo 已提交
2708
class TestThresholdedRelu(TestActivation):
2709 2710
    def setUp(self):
        self.op_type = "thresholded_relu"
2711 2712
        self.init_dtype()

2713
        threshold = 15
2714

2715 2716 2717 2718 2719 2720
        np.random.seed(1024)
        x = np.random.uniform(-20, 20, [10, 12]).astype(self.dtype)
        x[np.abs(x) < 0.005] = 0.02
        out = ref_thresholded_relu(x, threshold)
        self.inputs = {'X': x}
        self.attrs = {"threshold": threshold}
2721
        self.outputs = {'Out': out}
2722 2723

    def test_check_grad(self):
2724 2725
        if self.dtype == np.float16:
            return
2726
        self.check_grad(['X'], 'Out')
2727 2728


2729 2730 2731 2732 2733 2734 2735
class TestThresholdedReluAPI(unittest.TestCase):
    # test paddle.nn.ThresholdedReLU, paddle.nn.functional.thresholded_relu
    def setUp(self):
        self.threshold = 15
        np.random.seed(1024)
        self.x_np = np.random.uniform(-20, 20, [10, 12]).astype(np.float64)
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
J
joejiong 已提交
2736
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2737 2738 2739 2740 2741
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2742
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
            out1 = F.thresholded_relu(x, self.threshold)
            thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
            out2 = thresholded_relu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.thresholded_relu(x, self.threshold)
        thresholded_relu = paddle.nn.ThresholdedReLU(self.threshold)
        out2 = thresholded_relu(x)
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.thresholded_relu(x, self.threshold)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_thresholded_relu(self.x_np, self.threshold)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

2773
    def test_errors(self):
2774 2775
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2776
            # The input type must be Variable.
2777
            self.assertRaises(TypeError, F.thresholded_relu, 1)
2778
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2779 2780
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2781
            self.assertRaises(TypeError, F.thresholded_relu, x_int32)
2782
            # support the input dtype is float16
J
joejiong 已提交
2783 2784
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2785
            F.thresholded_relu(x_fp16)
2786 2787


2788 2789 2790 2791
def ref_hardsigmoid(x, slope=0.166666666666667, offset=0.5):
    return np.maximum(np.minimum(x * slope + offset, 1.), 0.).astype(x.dtype)


C
chengduo 已提交
2792
class TestHardSigmoid(TestActivation):
2793 2794
    def setUp(self):
        self.op_type = "hard_sigmoid"
2795 2796 2797 2798
        self.dtype = 'float64'
        self.slope = 0.166666666666667
        self.offset = 0.5
        self.set_attrs()
2799

2800 2801 2802
        x = np.random.uniform(-5, 5, [10, 12]).astype(self.dtype)
        lower_threshold = -self.offset / self.slope
        upper_threshold = (1. - self.offset) / self.slope
Z
zhupengyang 已提交
2803

2804
        # Same reason as TestAbs
2805 2806 2807
        delta = 0.005
        x[np.abs(x - lower_threshold) < delta] = lower_threshold - 0.02
        x[np.abs(x - upper_threshold) < delta] = upper_threshold - 0.02
2808

2809
        out = ref_hardsigmoid(x, self.slope, self.offset)
2810

2811 2812
        self.attrs = {'slope': self.slope, 'offset': self.offset}
        self.inputs = {'X': x}
2813
        self.outputs = {'Out': out}
2814

2815 2816
    def set_attrs(self):
        pass
2817

2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
class TestHardSigmoidFP32(TestHardSigmoid):
    def set_attrs(self):
        self.dtype = 'float32'


class TestHardSigmoidSlopeOffset(TestHardSigmoid):
    def set_attrs(self):
        self.slope = 0.2
        self.offset = 0.4


class TestHardsigmoidAPI(unittest.TestCase):
    # test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2834
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2835 2836 2837 2838
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2839
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
            out1 = F.hardsigmoid(x)
            m = paddle.nn.Hardsigmoid()
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardsigmoid(self.x_np)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.hardsigmoid(x)
        m = paddle.nn.Hardsigmoid()
        out2 = m(x)
        out_ref = ref_hardsigmoid(self.x_np)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))
2858
        paddle.enable_static()
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.hard_sigmoid(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardsigmoid(self.x_np, 0.2, 0.5)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.hard_sigmoid(x)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()

    def test_errors(self):
        with paddle.static.program_guard(paddle.static.Program()):
2877
            # The input type must be Variable.
2878
            self.assertRaises(TypeError, F.hardsigmoid, 1)
2879
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2880 2881
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2882
            self.assertRaises(TypeError, F.hardsigmoid, x_int32)
2883
            # support the input dtype is float16
J
joejiong 已提交
2884 2885
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2886
            F.hardsigmoid(x_fp16)
2887 2888


2889 2890 2891 2892 2893
def ref_swish(x):
    out = x * expit(x)
    return out


C
chengduo 已提交
2894
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
2895 2896
    def setUp(self):
        self.op_type = "swish"
2897 2898
        self.init_dtype()

2899
        np.random.seed(1024)
2900 2901 2902
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_swish(x)
        self.inputs = {'X': x}
H
hong19860320 已提交
2903
        self.attrs = {'beta': 1.0}
2904
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
2905 2906

    def test_check_grad(self):
2907 2908
        if self.dtype == np.float16:
            return
2909 2910
        self.check_grad(['X'], 'Out')

A
Abhinav Arora 已提交
2911

2912 2913 2914 2915 2916
class TestSwishAPI(unittest.TestCase):
    # test paddle.nn.Swish, paddle.nn.functional.swish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
J
joejiong 已提交
2917
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
2918 2919 2920 2921 2922
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
J
joejiong 已提交
2923
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            out1 = F.swish(x)
            swish = paddle.nn.Swish()
            out2 = swish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_swish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.swish(x)
        swish = paddle.nn.Swish()
        out2 = swish(x)
        out_ref = ref_swish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.swish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_swish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)
2953

2954
    def test_errors(self):
2955 2956
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
2957
            # The input type must be Variable.
2958
            self.assertRaises(TypeError, F.swish, 1)
2959
            # The input dtype must be float16, float32, float64.
J
joejiong 已提交
2960 2961
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
2962
            self.assertRaises(TypeError, F.swish, x_int32)
2963
            # support the input dtype is float16
J
joejiong 已提交
2964 2965
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
2966
            F.swish(x_fp16)
2967 2968


2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
def ref_mish(x, threshold=20.):
    softplus = np.select([x <= threshold, x > threshold],
                         [np.log(1 + np.exp(x)), x])
    return x * np.tanh(softplus)


class TestMish(TestActivation):
    def setUp(self):
        self.op_type = "mish"
        self.init_dtype()

        np.random.seed(1024)
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
        out = ref_mish(x)
        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestMishAPI(unittest.TestCase):
    # test paddle.nn.Mish, paddle.nn.functional.mish
    def setUp(self):
        np.random.seed(1024)
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype(np.float64)
        self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.mish(x)
            mish = paddle.nn.Mish()
            out2 = mish(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_mish(self.x_np)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.mish(x)
        mish = paddle.nn.Mish()
        out2 = mish(x)
        out_ref = ref_mish(self.x_np)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.mish(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_mish(self.x_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.mish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.mish, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            F.mish(x_fp16)


3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')
J
joejiong 已提交
3080
create_test_error_class('tan')
X
xiaoting 已提交
3081 3082 3083
create_test_error_class('acosh')
create_test_error_class('asinh')
create_test_error_class('atanh')
3084 3085


3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
3105 3106 3107 3108 3109
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
J
joejiong 已提交
3110
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
C
chengduo 已提交
3111 3112 3113 3114
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
3115

C
chengduo 已提交
3116
        def test_check_output(self):
3117
            place = core.CUDAPlace(0)
C
chengduo 已提交
3118 3119 3120
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
3121

C
chengduo 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
R
ronnywang 已提交
3135
create_test_act_fp16_class(TestExpm1)
C
chengduo 已提交
3136
create_test_act_fp16_class(TestSigmoid)
M
minghaoBD 已提交
3137
create_test_act_fp16_class(TestSilu)
C
chengduo 已提交
3138 3139
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
3140
create_test_act_fp16_class(TestTanhshrink)
C
chengduo 已提交
3141
create_test_act_fp16_class(TestHardShrink)
3142
create_test_act_fp16_class(TestSoftshrink)
C
chengduo 已提交
3143 3144 3145 3146 3147
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
J
joejiong 已提交
3148
create_test_act_fp16_class(TestTan, grad_atol=0.85)
3149
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
3150
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
3151
create_test_act_fp16_class(TestSin)
3152
create_test_act_fp16_class(TestSinh)
3153 3154
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
X
xiaoting 已提交
3155 3156 3157
create_test_act_fp16_class(TestAcosh, grad_atol=0.85)
create_test_act_fp16_class(TestAsinh, grad_atol=0.85)
create_test_act_fp16_class(TestAtanh, grad_atol=0.85)
C
chengduo 已提交
3158 3159
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
3160
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
3161 3162
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
3163
create_test_act_fp16_class(TestSoftRelu, grad_atol=0.85)
C
chengduo 已提交
3164
create_test_act_fp16_class(TestELU)
3165
create_test_act_fp16_class(TestCELU)
C
chengduo 已提交
3166 3167
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
3168 3169 3170 3171
if core.is_compiled_with_rocm():
    create_test_act_fp16_class(TestLog2, atol=5e-2, grad_atol=0.85)
else:
    create_test_act_fp16_class(TestLog2, atol=5e-2)
J
joejiong 已提交
3172
create_test_act_fp16_class(TestLog10, atol=5e-2)
3173
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
3174 3175
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
3176
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
3177 3178 3179 3180 3181
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
3182
create_test_act_fp16_class(TestSwish, grad_atol=0.85)
H
huangjun12 已提交
3183
create_test_act_fp16_class(TestHardSwish)
3184
create_test_act_fp16_class(TestMish, grad_atol=0.9)
A
Abhinav Arora 已提交
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

def create_test_act_bf16_class(parent,
                               atol=1e-2,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActBF16(parent):
        def init_dtype(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "bf16")
    TestActBF16.__name__ = cls_name
    globals()[cls_name] = TestActBF16


create_test_act_bf16_class(TestRelu)

Q
qijun 已提交
3213
if __name__ == "__main__":
P
phlrain 已提交
3214
    paddle.enable_static()
Q
qijun 已提交
3215
    unittest.main()