test_dist_base.py 64.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import tempfile
X
Xin Pan 已提交
16

17
import ast
X
Xin Pan 已提交
18 19 20 21
import unittest
import os
import sys
import subprocess
W
Wu Yi 已提交
22
import argparse
W
Wu Yi 已提交
23
import pickle
24
import random
W
Wu Yi 已提交
25
import numpy as np
26
import time
27 28

import paddle
29
import paddle.fluid as fluid
30
from paddle.fluid import compiler
31
import paddle.fluid.dygraph as dygraph
32
from paddle.fluid.framework import _test_eager_guard
33 34 35
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
36
RUN_STEP = 5
37
DEFAULT_BATCH_SIZE = 2
38
DIST_UT_PORT = 0
39

T
typhoonzero 已提交
40

41
def print_to_out(out_losses):
T
tianshuo78520a 已提交
42
    sys.stdout.buffer.write(pickle.dumps(out_losses))
43 44 45


def print_to_err(class_name, log_str):
46 47
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
48
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
49 50


51 52 53 54
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
55
class TestDistRunnerBase(object):
56 57 58 59 60 61 62 63
    def get_model(
        self,
        batch_size=DEFAULT_BATCH_SIZE,
        lr=0.1,
        single_device=False,
        use_dgc=False,
        dist_strategy=None,
    ):
T
typhoonzero 已提交
64
        raise NotImplementedError(
65 66
            "get_model should be implemented by child classes."
        )
T
typhoonzero 已提交
67

68
    @staticmethod
69 70 71 72 73 74 75 76 77 78 79
    def get_transpiler(
        trainer_id,
        main_program,
        pserver_endpoints,
        trainers,
        sync_mode,
        dc_asgd=False,
        current_endpoint=None,
        nccl_comm_num=1,
        hogwild_mode=False,
    ):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
90 91 92 93 94 95 96 97
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers,
            sync_mode=sync_mode,
            current_endpoint=current_endpoint,
        )
T
typhoonzero 已提交
98 99
        return t

100 101 102 103 104
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
105

106 107 108 109
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
110
    def run_pserver(self, args):
W
Wu Yi 已提交
111
        self.lr = args.lr
112
        self.get_model(batch_size=args.batch_size)
113
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
114

115 116 117 118 119 120 121 122 123
        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild,
        )
W
Wu Yi 已提交
124
        pserver_prog = t.get_pserver_program(args.current_endpoint)
125 126 127
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
Y
Yancey1989 已提交
128

T
typhoonzero 已提交
129 130 131
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
132
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
133
        exe.run(pserver_prog)
134
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
135

136 137 138 139
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
140 141 142 143 144 145 146 147 148 149 150
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
            data_loader,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
151 152 153 154 155 156 157 158 159 160 161 162 163

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
164 165 166

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
167
        for i in range(RUN_STEP):
168
            loss = exe.run(main_program, fetch_list=[avg_cost])
169 170 171
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
172 173 174
            if lr_sheduler is not None:
                lr_sheduler.step()

175
        data_loader.reset()
176 177
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
178
        sys.stdout.buffer.write(pickle.dumps(out_losses))
179

180 181 182 183 184 185 186 187 188 189 190
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

191 192 193 194 195 196 197 198
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(batch_size=args.batch_size)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
216 217
            var
            for var in fluid.default_main_program().global_block().vars.values()
218 219 220 221 222 223 224 225 226 227 228 229 230
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
231 232 233 234
            if (
                paddle.distributed.get_world_size() == 1
                and args.update_method == 'gloo'
            ):  # Gloo single mode
X
xiongkun 已提交
235 236 237
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
238 239 240 241 242 243 244 245 246 247
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
248
        for i in range(RUN_STEP):
249 250 251 252 253
            (loss,) = exe.run(
                fluid.default_main_program(),
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
254 255 256 257 258
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
259
        sys.stdout.buffer.write(pickle.dumps(out_losses))
260

261 262
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
263 264 265 266 267 268 269 270

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
271
        dist_strategy.fuse_memory_size = 1  # MB
272
        dist_strategy.fuse_laryer_size = 1
273 274 275 276
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
277 278
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
279 280 281

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
282
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
283 284
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
285

286 287 288 289 290 291 292 293 294 295
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
296 297 298 299

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

300 301 302 303 304 305 306 307 308 309
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
310 311 312 313 314 315

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
316 317
            var
            for var in trainer_prog.global_block().vars.values()
318 319 320
            if var.is_data
        ]

321 322 323 324 325 326 327
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

328 329 330 331 332 333 334 335 336 337 338 339 340 341
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

342
        print_to_err(type(self).__name__, "begin to train on trainer")
343
        out_losses = []
344
        for i in range(RUN_STEP):
345 346 347 348 349
            (loss,) = exe.run(
                dist_prog,
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
350
            out_losses.append(loss[0])
351 352
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
353

T
tianshuo78520a 已提交
354
        sys.stdout.buffer.write(pickle.dumps(out_losses))
355

356 357 358
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
359 360 361 362 363 364 365 366 367 368 369 370
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer"
                )
371
            else:
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables_2"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables_2"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer_2"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer_2"
                )
            fluid.io.save_persistables(
                exe, model_save_dir_fluid, fleet._origin_program
            )
387 388
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
389 390 391 392 393 394 395 396 397 398
            fluid.io.save_inference_model(
                infer_save_dir_fluid,
                feeded_var_names,
                [avg_cost],
                exe,
                fleet._origin_program,
            )
            fleet.save_inference_model(
                exe, infer_save_dir_fleet, feeded_var_names, [avg_cost]
            )
399

400
    def run_trainer(self, args):
W
Wu Yi 已提交
401
        self.lr = args.lr
W
Wu Yi 已提交
402
        if args.nccl2_reduce_layer_local_run:
403 404 405 406 407 408 409 410
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size, single_device=True)
411
        elif args.use_dgc:
412 413 414 415 416 417 418 419
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
420
        else:
421 422 423 424 425 426 427 428
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size)
429

W
Wu Yi 已提交
430
        if args.update_method == "pserver":
431
            print_to_err(
432
                type(self).__name__,
433 434 435 436 437 438 439 440 441 442 443
                "begin to run transpile on trainer with pserver mode",
            )
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild,
            )
T
tangwei12 已提交
444

T
typhoonzero 已提交
445
            trainer_prog = t.get_trainer_program()
446
            print_to_err(
447
                type(self).__name__,
448 449 450 451 452 453
                "get trainer program done with pserver mode.",
            )
        elif (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
W
Wu Yi 已提交
454 455 456
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
457
            config.nccl_comm_num = args.nccl_comm_num
458 459
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
460 461 462
                config.hierarchical_allreduce_inter_nranks = (
                    args.hallreduce_inter_nranks
                )
463
            print_to_err(
464
                type(self).__name__,
465 466
                "begin to run transpile on trainer with nccl2 mode",
            )
W
Wu Yi 已提交
467
            nccl2_t = fluid.DistributeTranspiler(config=config)
468 469 470 471 472 473 474
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint,
            )
475
            print_to_err(
476 477
                type(self).__name__, "get trainer program done. with nccl2 mode"
            )
W
Wu Yi 已提交
478
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
479
        else:
480
            print_to_err(
481
                type(self).__name__,
482 483
                "do nothing about main program, just use it",
            )
T
typhoonzero 已提交
484
            trainer_prog = fluid.default_main_program()
485
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
486

487 488 489
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

490
        if args.use_cuda:
491 492
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
493 494 495
        else:
            place = fluid.CPUPlace()

496 497
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
498
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
499

W
Wu Yi 已提交
500 501
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
502

W
Wu Yi 已提交
503
        build_stra = fluid.BuildStrategy()
504 505 506
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
507

508 509 510 511
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
512 513 514
        if args.hogwild:
            build_stra.async_mode = True

515 516 517
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
518
        if args.use_reduce:
519 520 521
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.Reduce
            )
W
Wu Yi 已提交
522
        else:
523 524 525
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.AllReduce
            )
W
Wu Yi 已提交
526

W
Wu Yi 已提交
527
        pass_builder = None
X
Xin Pan 已提交
528
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
529
            pass_builder = build_stra._finalize_strategy_and_create_passes()
530
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
531
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
532

533 534 535 536
        if (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
537 538
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
539
        else:
W
Wu Yi 已提交
540
            # case args.update_method == "nccl2_reduce_layer":
541 542
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
543

544
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
545
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
546
            loss_name=avg_cost.name,
W
Wu Yi 已提交
547
            build_strategy=build_stra,
548 549
            exec_strategy=exec_strategy,
        )
550
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
551 552

        feed_var_list = [
553 554
            var
            for var in trainer_prog.global_block().vars.values()
T
typhoonzero 已提交
555 556 557 558
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
559
        reader_generator = train_reader()
T
typhoonzero 已提交
560

561 562
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
563
            if args.update_method != "local" and args.use_reader_alloc:
564 565 566 567 568 569 570
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
571

572
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
573
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
574
        out_losses = []
575
        for i in range(RUN_STEP):
576 577 578
            (loss,) = exe.run(
                binary, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())
            )
W
Wu Yi 已提交
579
            out_losses.append(loss[0])
580
            print_to_err(type(self).__name__, "run step %d finished" % i)
581 582 583
            if lr_scheduler is not None:
                lr_scheduler.step()

584
        print_to_err(type(self).__name__, "trainer run finished")
585

586
        print_to_out(out_losses)
T
typhoonzero 已提交
587 588


589 590 591
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
592 593
            "get_model should be implemented by child classes."
        )
594 595 596

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
597 598
            "train_one_loop should be implemented by the child classes."
        )
599

600
    def _get_data(self, batch, args):
601 602 603 604
        if (
            paddle.distributed.get_world_size() == 1
            and args.update_method == 'gloo'
        ):  # Gloo single mode
X
xiongkun 已提交
605 606
            return batch
        elif args.update_method != "local":
607
            new_batch = []
608

609 610 611
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
612 613
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
614 615 616
                assert (
                    len(batch) > 2
                ), "in differ_batch mode, len(batch) must > 2."
617 618 619 620 621 622 623 624 625 626 627 628 629 630
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
631 632 633
        else:
            return batch

634 635
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
636 637 638
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
639 640 641 642 643
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
644 645 646
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
647 648 649
        elif fluid.core.is_compiled_with_mlu():
            device_id = int(os.getenv("FLAGS_selected_mlus", "0"))
            place = fluid.MLUPlace(device_id)
650
        else:
651
            assert "Only support CUDAPlace or XPUPlace or CPU(Gloo) for now."
652 653 654 655

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
656 657
            np.random.seed(seed)
            import random
658

659
            random.seed(seed)
660 661
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
662

663 664 665 666 667 668 669
            # if args.update_method == "nccl2":
            if (
                args.update_method == "nccl2"
                or args.update_method == "bkcl"
                or args.update_method == "hccl"
                or args.update_method == "cncl"
            ):
670 671 672 673 674
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
675
                paddle.distributed.init_parallel_env()
676
                print_to_err(
677
                    type(self).__name__,
678 679
                    "begin to prepare context in dygraph with nccl2",
                )
680
                dygraph.parallel.prepare_context(strategy)
681 682
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
683 684
                        model, strategy, find_unused_parameters=False
                    )
685 686
                else:
                    model = dygraph.parallel.DataParallel(
687 688
                        model, strategy, find_unused_parameters=True
                    )
689
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
690 691 692 693 694

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
695 696
                        model, find_unused_parameters=False
                    )
X
xiongkun 已提交
697 698
                else:
                    model = dygraph.parallel.DataParallel(
699 700
                        model, find_unused_parameters=True
                    )
X
xiongkun 已提交
701

702
            out_losses = []
703
            print_to_err(type(self).__name__, "begin to run dygraph training")
704
            for step_id, data in enumerate(train_reader()):
705
                data = self._get_data(data, args)
706 707 708
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
709
                if step_id % 10 == 0:
710
                    print_to_err(
711
                        type(self).__name__,
712 713
                        "loss at step %d: %f" % (step_id, loss.numpy()),
                    )
Y
Yan Xu 已提交
714
                out_losses.append(loss.numpy())
715 716 717 718

                loss.backward()

                opt.minimize(loss)
719 720
                if not args.accumulate_gradient:
                    model.clear_gradients()
721
        print_to_out(out_losses)
722

723 724 725 726 727 728 729 730 731
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
732
        random.seed(seed)
733
        # get trainer id
L
LiYuRio 已提交
734 735
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
736 737

        # 3. init parallel env
X
xiongkun 已提交
738
        if args.update_method in ["nccl2", "gloo"]:
739 740 741 742
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
743
        if args.update_method in ["nccl2", "gloo"]:
744
            model = paddle.DataParallel(
745 746
                model, find_unused_parameters=args.find_unused_parameters
            )
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

762
    def run_use_fleet_api_trainer(self, args):
763
        import paddle.distributed.fleet as fleet
764

765 766 767 768 769 770 771 772
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
773
        random.seed(seed)
774
        # get trainer id
L
LiYuRio 已提交
775 776
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
777

778 779
        # set strategy
        strategy = fleet.DistributedStrategy()
780 781
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
782

783
        # 3. init parallel env
784
        if args.update_method == "nccl2" or "bkcl" or "hccl":
785
            fleet.init(is_collective=True, strategy=strategy)
786 787 788

        # 4. train model
        model, train_reader, opt = self.get_model()
789
        if args.update_method == "nccl2" or "bkcl" or "hccl":
790 791 792 793 794 795 796 797 798 799 800 801 802 803
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
804 805
            if not args.accumulate_gradient:
                opt.clear_grad()
806 807
        print_to_out(out_losses)

808

T
typhoonzero 已提交
809
def runtime_main(test_class):
W
Wu Yi 已提交
810
    parser = argparse.ArgumentParser(description='Run dist test.')
811 812 813
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer']
    )
W
Wu Yi 已提交
814
    parser.add_argument('--endpoints', type=str, required=False, default="")
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
        choices=[
            "pserver",
            "nccl2",
            "bkcl",
            "local",
            "nccl2_reduce_layer",
            "gloo",
            "hccl",
            "cncl",
        ],
    )
W
Wu Yi 已提交
830 831
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
832
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
833 834
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
835
    parser.add_argument('--use_pipeline', action='store_true')
836
    parser.add_argument('--use_fleet_api', action='store_true')
837
    parser.add_argument('--use_fleet_api_20', action='store_true')
838
    parser.add_argument('--use_local_sgd', action='store_true')
839
    parser.add_argument('--diff_batch', action='store_true')
840
    parser.add_argument('--ut4grad_allreduce', action='store_true')
841 842 843 844 845 846
    parser.add_argument(
        '--hallreduce_inter_nranks', type=int, required=False, default=2
    )
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default=""
    )
W
Wu Yi 已提交
847
    parser.add_argument('--sync_mode', action='store_true')
848
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
849
    parser.add_argument('--use_cpu', action='store_true')
850
    parser.add_argument('--use_xpu', action='store_true')
851
    parser.add_argument('--use_dgc', action='store_true')
852
    parser.add_argument('--use_npu', action='store_true')
853
    parser.add_argument('--use_mlu', action='store_true')
854
    parser.add_argument('--accumulate_gradient', action='store_true')
855
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
856
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
857
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
858
    parser.add_argument('--hogwild', action='store_true')
859
    parser.add_argument('--save_model', action='store_true')
860 861 862
    parser.add_argument(
        '--use_reader_alloc', action='store_true', required=False
    )
863
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
864
    parser.add_argument('--lr', required=False, type=float, default=0.001)
865 866 867 868 869 870 871 872 873
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1
    )
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False,
    )
874
    parser.add_argument('--sync_batch_norm', action='store_true')
875 876 877
    parser.add_argument(
        '--fuse_all_reduce', required=False, type=ast.literal_eval, default=None
    )
W
Wu Yi 已提交
878 879

    args = parser.parse_args()
T
typhoonzero 已提交
880

X
xiongkun 已提交
881 882 883
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
884
    model = test_class()
W
Wu Yi 已提交
885
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
886
        model.run_pserver(args)
887 888
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
889 890
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
891 892
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
893
    else:
894
        model.run_trainer(args)
X
Xin Pan 已提交
895

M
minqiyang 已提交
896

Y
Yancey1989 已提交
897 898
import socket
from contextlib import closing
M
minqiyang 已提交
899

X
Xin Pan 已提交
900 901

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
902 903 904
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

905 906 907
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
908
            self.__use_xpu = False
909
            self._use_dgc = False
910
            self.__use_npu = False
911
            self._use_mlu = False
912 913
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
914
            self.__use_xpu = False
915
            self.__use_npu = False
916
            self._use_mlu = False
917 918 919 920
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
921
            self.__use_npu = False
922
            self._use_mlu = False
923 924 925 926 927
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
928 929 930 931 932 933 934
            self._use_mlu = False
        elif self._enforce_place == "MLU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = False
            self._use_mlu = True
935 936 937 938 939
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
940 941 942 943
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
944

X
Xin Pan 已提交
945 946 947
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
948
        self._port_set = set()
M
minqiyang 已提交
949
        self._python_interp = sys.executable
W
Wu Yi 已提交
950
        self._sync_mode = True
T
tangwei12 已提交
951
        self._hogwild_mode = False
952
        self._enforce_place = None
W
Wu Yi 已提交
953
        self._use_reduce = False
W
Wu Yi 已提交
954
        self._dc_asgd = False  # must use with async mode
955
        self._use_reader_alloc = True
W
Wu Yi 已提交
956
        self._nccl2_mode = False
957
        self._bkcl_mode = False
X
xiongkun 已提交
958
        self._gloo_mode = False  # now, support gloo backend
959
        self._hccl_mode = False
960
        self._cncl_mode = False
961
        self._pipeline_mode = False
962
        self._mp_mode = False
963
        self._diff_batch = False
W
Wu Yi 已提交
964 965 966 967 968
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
969
        self._lr = 0.001
970
        self._use_dgc = False
971
        self._dygraph = False
972
        self._nccl_comm_num = 1
973
        self._enable_backward_deps = False
974
        self._use_fleet_api = False
975
        self._use_fleet_api_20 = False
976 977
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
978
        self._use_hallreduce = False
979
        self._save_model = False
980
        self._fuse_all_reduce = None
981
        self._accumulate_gradient = False
982
        self._find_unused_parameters = False
W
Wu Yi 已提交
983
        self._setup_config()
984 985 986 987 988 989 990

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
991 992 993
                self._find_free_port(),
                self._find_free_port(),
            )
994 995
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
996 997 998
                DIST_UT_PORT,
                DIST_UT_PORT + 1,
            )
999
            DIST_UT_PORT += 2
1000
            self._dist_port = DIST_UT_PORT
1001

1002
        self._after_setup_config()
X
Xin Pan 已提交
1003

1004 1005 1006 1007 1008
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
1009
    def _find_free_port(self):
Y
Yancey1989 已提交
1010
        def __free_port():
1011 1012 1013
            with closing(
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as s:
Y
Yancey1989 已提交
1014
                s.bind(('', 0))
1015
                print_to_err(
1016 1017
                    type(self).__name__, "socket name: %s" % s.getsockname()[1]
                )
Y
Yancey1989 已提交
1018 1019 1020 1021 1022 1023 1024
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
1025

1026 1027 1028
    def start_pserver(
        self, model_file, check_error_log, required_envs, log_name=""
    ):
X
Xin Pan 已提交
1029
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1030 1031 1032 1033 1034 1035 1036 1037
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        ps0_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps0_ep,
            self._trainers,
        )
        ps1_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps1_ep,
            self._trainers,
        )
W
Wu Yi 已提交
1052 1053 1054 1055

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
1056

1057 1058
        print(ps0_cmd)
        print(ps1_cmd)
1059 1060 1061 1062
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
1063

1064
        print_to_err(type(self).__name__, "going to start pserver process 0")
1065 1066 1067 1068 1069 1070
        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs,
        )
1071
        print_to_err(type(self).__name__, "going to start pserver process 1")
1072 1073 1074 1075 1076 1077
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs,
        )
G
gongweibao 已提交
1078

1079
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def _run_local(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="1",
    ):
G
gongweibao 已提交
1091

1092 1093 1094 1095 1096 1097
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

1098 1099 1100 1101
        cmd += " %s --role trainer --update_method local --lr %f" % (
            model,
            self._lr,
        )
1102

1103 1104 1105 1106
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
1107 1108
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
1109

1110
        if self.__use_cuda:
1111
            cmd += " --use_cuda"
W
Wu Yi 已提交
1112
            env_local = {
1113 1114
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
1115
                "PADDLE_TRAINER_ID": "0",
1116 1117 1118 1119 1120
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
1121
                "PADDLE_TRAINERS_NUM": "1",
1122
                "PADDLE_TRAINER_ID": "0",
W
Wu Yi 已提交
1123
            }
1124 1125 1126 1127 1128
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
1129
                "PADDLE_TRAINER_ID": "0",
1130
            }
1131 1132 1133
        else:
            env_local = {'CPU_NUM': '1'}

1134
        # not use dgc in single card
1135
        if len(devices) > 1 and self._use_dgc:
1136 1137
            cmd += " --use_dgc"

1138 1139 1140
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1141 1142 1143
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1144 1145
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1146

1147
        if check_error_log:
1148 1149
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1150 1151 1152 1153 1154 1155
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local,
            )
G
gongweibao 已提交
1156
        else:
1157 1158 1159 1160 1161 1162
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local,
            )
G
gongweibao 已提交
1163

1164 1165 1166 1167 1168 1169
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1170
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1171

W
Wu Yi 已提交
1172
        return pickle.loads(local_out)
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    def _run_local_gloo(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="0",
    ):
X
xiongkun 已提交
1184 1185
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
1186 1187 1188
        result = self._run_cluster_gloo(
            model, envs, 'gloo', check_error_log, log_name
        )
X
xiongkun 已提交
1189 1190 1191
        self._ps_endpoints = saved_endpoints
        return result

1192
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1193
        # Run dist train to compare with local results
1194 1195 1196
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name
        )
W
Wu Yi 已提交
1197

X
Xin Pan 已提交
1198
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1199

1200 1201 1202 1203 1204 1205 1206 1207
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        tr0_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            0,
            ps0_ep,
            self._trainers,
            self._lr,
        )
        tr1_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            1,
            ps1_ep,
            self._trainers,
            self._lr,
        )
W
Wu Yi 已提交
1226 1227 1228 1229

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1230 1231 1232
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1233 1234 1235
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1236 1237 1238
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1239
        if self.__use_cuda:
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1250

W
Wu Yi 已提交
1251 1252
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1253 1254 1255 1256 1257

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1258

1259
        print_to_err(type(self).__name__, "going to start trainer process 0")
1260 1261 1262 1263 1264 1265
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0,
        )
1266
        print_to_err(type(self).__name__, "going to start trainer process 1")
1267 1268 1269 1270 1271 1272
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1,
        )
X
Xin Pan 已提交
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1286 1287
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1288

G
gongweibao 已提交
1289
        # close trainer file
1290 1291 1292 1293
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1294

W
Wu Yi 已提交
1295 1296
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1297

W
Wu Yi 已提交
1298 1299
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1300 1301 1302
    def _get_gloo_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
X
xiongkun 已提交
1303 1304 1305 1306 1307 1308 1309 1310
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1311 1312 1313 1314 1315 1316 1317 1318 1319
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
X
xiongkun 已提交
1320 1321 1322 1323 1324

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
1325 1326
        # assert self._use_reduce == False, "gloo not support _use_reduce"
        # assert self._use_reader_alloc == False, "gloo not support _use_reduce"
X
xiongkun 已提交
1327 1328
        if self._save_model:
            tr_cmd += " --save_model"
1329 1330
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1331 1332 1333 1334 1335
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        env.update(
            {
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_DISTRI_BACKEND": "gloo",
                "GLOG_v": "2",
            }
        )
X
xiongkun 已提交
1347 1348

        assert self._use_dgc == False, "gloo not support use dgc"
1349

X
xiongkun 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1368 1369 1370
    def _get_nccl2_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
1371
        env = {}
1372 1373 1374 1375 1376 1377 1378
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1379 1380 1381 1382 1383 1384 1385 1386 1387
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
W
Wu Yi 已提交
1388 1389

        if self._use_reduce:
1390
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1391
        if self._use_reader_alloc:
1392
            tr_cmd += " --use_reader_alloc"
1393 1394
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1395
        if self.__use_cuda:
1396
            tr_cmd += " --use_cuda"
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            env.update(
                {
                    "FLAGS_selected_gpus": "{}".format(0),
                    "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                }
            )
1407 1408 1409 1410
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
            env.update(
                {
                    "FLAGS_selected_xpus": "{}".format(trainer_id),
                    # "XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
1422 1423
        elif self.__use_npu:
            tr_cmd += " --use_npu"
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
            env.update(
                {
                    "FLAGS_selected_npus": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
1434 1435
        elif self._use_mlu:
            tr_cmd += " --use_mlu"
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            env.update(
                {
                    "FLAGS_selected_mlus": "{}".format(trainer_id),
                    "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                    "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "4",
                }
            )
W
Wu Yi 已提交
1446
        else:
1447
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1448

1449
        if self._use_dgc:
1450 1451
            tr_cmd += " --use_dgc"

1452 1453 1454
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1455 1456 1457
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1458 1459
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1460
        if self._mp_mode:
W
WangXi 已提交
1461
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1462 1463

        if self._nccl_comm_num > 1:
1464
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1465

1466 1467
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1468

1469
        if self._enable_backward_deps:
1470
            tr_cmd += " --enable_backward_deps"
1471

1472 1473 1474
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1475
        if self._use_fleet_api:
1476 1477 1478 1479 1480
            tr_cmd += (
                " --use_fleet_api_20"
                if self._use_fleet_api_20
                else " --use_fleet_api"
            )
1481 1482 1483 1484
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1485 1486
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1487

1488 1489 1490
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1491
        return tr_cmd, env
W
Wu Yi 已提交
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    def _run_cluster_gloo(
        self, model, envs, update_method, check_error_log, log_name
    ):
        assert update_method == "gloo", (
            "_run_cluster_gloo must have update_method: gloo, but get %s"
            % update_method
        )
        assert (
            not self._use_hallreduce
        ), "_run_cluster_gloo must have _use_hallreduce = false"
X
xiongkun 已提交
1503 1504 1505 1506 1507 1508 1509 1510

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1511 1512 1513
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num
            )
X
xiongkun 已提交
1514 1515 1516
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
1517 1518 1519 1520 1521
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
X
xiongkun 已提交
1522

1523 1524 1525
            path = os.path.join(
                self.temp_dir.name, log_name + "_tr{}_err.log".format(i)
            )
1526
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1527 1528 1529

            print_to_err(
                type(self).__name__,
1530 1531 1532 1533 1534 1535 1536 1537
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
X
xiongkun 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
1550 1551
            if check_error_log:
                print("outs[0]:", outs[0])
X
xiongkun 已提交
1552 1553 1554 1555 1556 1557 1558 1559
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1560 1561 1562
    def _run_cluster_nccl2(
        self, model, envs, update_method, check_error_log, log_name
    ):
1563 1564
        if self._use_hallreduce:
            self._ps_endpoints = ""
1565 1566 1567

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1568
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1569 1570
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
1571 1572
                        self._find_free_port()
                    )
1573 1574 1575 1576
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1577
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1578

1579 1580
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1581

1582
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1583

1584 1585 1586 1587
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1588 1589
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1590
            tr_env.update(envs)
1591 1592 1593 1594 1595
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
W
Wu Yi 已提交
1596

1597 1598 1599
            path = os.path.join(
                self.temp_dir.name, log_name + "_tr{}_err.log".format(i)
            )
1600
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1601

1602
            print_to_err(
1603
                type(self).__name__,
1604 1605 1606 1607 1608 1609 1610 1611
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1623 1624 1625
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1626

1627
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1640 1641
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1642 1643 1644 1645 1646 1647 1648
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

1649 1650
            path = os.path.join(self.temp_dir.name + "tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
1651 1652 1653

            print_to_err(
                type(self).__name__,
1654 1655 1656 1657 1658 1659 1660 1661
                "going to start process {} with nccl2".format(i),
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1678
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1679 1680 1681 1682 1683 1684
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1685
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1686
            "FLAGS_rpc_retry_bind_port": "50",
1687
            "FLAGS_cudnn_deterministic": "1",
1688
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1689
            "http_proxy": "",
1690
            "NCCL_P2P_DISABLE": "1",
1691
            "NCCL_SHM_DISABLE": "1",
1692
            "FLAGS_CONVERT_GRAPH_TO_PROGRAM": "1",
1693 1694 1695
        }

        if check_error_log:
1696 1697 1698 1699
            required_envs["GLOG_vmodule"] = (
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10,"
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10,"
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10,"
1700
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1701
            )
1702 1703
            required_envs["GLOG_logtostderr"] = "1"

1704 1705
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
1706 1707
                'NVIDIA_TF32_OVERRIDE', ''
            )
1708

1709 1710 1711
        required_envs.update(need_envs)
        return required_envs

1712 1713 1714 1715 1716 1717 1718 1719
    def check_with_place(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1720
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1721
            need_envs.update({"FLAGS_enable_eager_mode": "1"})
1722
            with _test_eager_guard():
1723 1724 1725 1726 1727 1728 1729
                self.check_with_place_func(
                    model_file=model_file,
                    delta=delta,
                    check_error_log=check_error_log,
                    need_envs=need_envs,
                    log_name=log_name,
                )
1730
            need_envs.update({"FLAGS_enable_eager_mode": "0"})
1731 1732 1733 1734 1735 1736 1737
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )
1738
        else:
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )

    def check_with_place_func(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1755 1756
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1757
        if self._gloo_mode:
1758 1759 1760
            local_losses = self._run_local_gloo(
                model_file, required_envs, check_error_log, log_name=log_name
            )
X
xiongkun 已提交
1761
        else:
1762 1763 1764
            local_losses = self._run_local(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1765

W
Wu Yi 已提交
1766
        if self._nccl2_mode:
W
Wu Yi 已提交
1767 1768
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1769 1770
                    model_file,
                    required_envs,
1771 1772
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1773 1774
                    log_name=log_name,
                )
W
Wu Yi 已提交
1775 1776
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1777 1778
                    model_file,
                    required_envs,
1779 1780
                    update_method='nccl2',
                    check_error_log=check_error_log,
1781 1782
                    log_name=log_name,
                )
1783 1784 1785 1786 1787 1788
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
1789 1790
                log_name=log_name,
            )
X
xiongkun 已提交
1791 1792 1793 1794 1795 1796 1797
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
1798 1799
                log_name=log_name,
            )
1800 1801 1802 1803 1804 1805
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
1806 1807
                log_name=log_name,
            )
1808 1809 1810 1811 1812 1813
        elif self._cncl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='cncl',
                check_error_log=check_error_log,
1814 1815
                log_name=log_name,
            )
1816
        elif self._pipeline_mode:
1817 1818 1819
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name
            )
W
Wu Yi 已提交
1820
        else:
1821 1822 1823
            tr0_losses, tr1_losses = self._run_cluster(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1824 1825

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1826 1827 1828
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1829 1830 1831 1832
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1833 1834
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1835

1836 1837 1838 1839 1840 1841 1842 1843
    def check_with_place_multi_cards(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1844

1845 1846 1847 1848 1849 1850
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1851 1852 1853 1854 1855 1856 1857
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                devices="0,1",
            )
1858 1859

            self._use_dgc = False
1860 1861 1862 1863 1864 1865 1866
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                devices="0,1",
            )
1867 1868 1869 1870 1871 1872 1873 1874

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)