test_dist_base.py 64.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import tempfile
X
Xin Pan 已提交
16

17
import ast
X
Xin Pan 已提交
18 19 20 21
import unittest
import os
import sys
import subprocess
W
Wu Yi 已提交
22
import argparse
W
Wu Yi 已提交
23
import pickle
24
import random
W
Wu Yi 已提交
25
import numpy as np
26
import time
27 28

import paddle
29
import paddle.fluid as fluid
30
from paddle.fluid import compiler
31
import paddle.fluid.dygraph as dygraph
32
from paddle.fluid.framework import _test_eager_guard
33 34 35
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
36
RUN_STEP = 5
37
DEFAULT_BATCH_SIZE = 2
38
DIST_UT_PORT = 0
39

T
typhoonzero 已提交
40

41
def print_to_out(out_losses):
T
tianshuo78520a 已提交
42
    sys.stdout.buffer.write(pickle.dumps(out_losses))
43 44 45


def print_to_err(class_name, log_str):
46 47
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
48
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
49 50


51 52 53 54
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
55
class TestDistRunnerBase(object):
56

W
Wu Yi 已提交
57 58 59
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
60
                  single_device=False,
J
Jiangxinz 已提交
61 62
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
63 64 65
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

66
    @staticmethod
W
Wu Yi 已提交
67 68 69 70 71
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
72
                       dc_asgd=False,
73
                       current_endpoint=None,
T
tangwei12 已提交
74 75
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
76
        # NOTE: import fluid until runtime, or else forking processes will cause error.
77
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
78
        config.enable_dc_asgd = dc_asgd
79
        config.sync_mode = sync_mode
T
tangwei12 已提交
80 81
        config.runtime_split_send_recv = hogwild_mode

82 83
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
84
        # config.runtime_split_send_recv = True
85
        t = fluid.DistributeTranspiler(config=config)
86 87 88 89 90 91
        t.transpile(trainer_id=trainer_id,
                    program=main_program,
                    pservers=pserver_endpoints,
                    trainers=trainers,
                    sync_mode=sync_mode,
                    current_endpoint=current_endpoint)
T
typhoonzero 已提交
92 93
        return t

94 95 96 97 98 99 100 101 102
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
103
    def run_pserver(self, args):
W
Wu Yi 已提交
104
        self.lr = args.lr
105
        self.get_model(batch_size=args.batch_size)
106
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
107

108 109 110 111 112 113 114
        t = self.get_transpiler(trainer_id=args.trainer_id,
                                main_program=fluid.default_main_program(),
                                pserver_endpoints=args.endpoints,
                                trainers=args.trainers,
                                sync_mode=args.sync_mode,
                                dc_asgd=args.dc_asgd,
                                hogwild_mode=args.hogwild)
W
Wu Yi 已提交
115 116 117
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
118

T
typhoonzero 已提交
119 120 121
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
122
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
123
        exe.run(pserver_prog)
124
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
145 146 147

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
148
        for i in range(RUN_STEP):
149
            loss = exe.run(main_program, fetch_list=[avg_cost])
150 151 152
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
153 154 155
            if lr_sheduler is not None:
                lr_sheduler.step()

156
        data_loader.reset()
157 158
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
159
        sys.stdout.buffer.write(pickle.dumps(out_losses))
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
191 192
            var for var in
            fluid.default_main_program().global_block().vars.values()
193 194 195 196 197 198 199 200 201 202 203 204 205
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
X
xiongkun 已提交
206 207 208 209 210
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
211 212 213 214 215 216 217 218 219 220
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
221
        for i in range(RUN_STEP):
222 223 224 225 226 227 228 229
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
230
        sys.stdout.buffer.write(pickle.dumps(out_losses))
231

232 233
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
234 235 236 237 238 239 240 241

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
242
        dist_strategy.fuse_memory_size = 1  # MB
243
        dist_strategy.fuse_laryer_size = 1
244 245 246 247
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
248 249
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
250 251 252

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
253
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
254 255
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
256 257

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
258
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
259 260 261 262

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

263 264 265 266 267 268 269 270 271 272
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
273 274 275 276 277 278 279 280 281 282

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

283 284 285 286 287 288 289
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

290 291 292 293 294 295 296 297 298 299 300 301 302 303
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

304
        print_to_err(type(self).__name__, "begin to train on trainer")
305
        out_losses = []
306
        for i in range(RUN_STEP):
307 308 309 310
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
311 312
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
313

T
tianshuo78520a 已提交
314
        sys.stdout.buffer.write(pickle.dumps(out_losses))
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

346
    def run_trainer(self, args):
W
Wu Yi 已提交
347
        self.lr = args.lr
W
Wu Yi 已提交
348 349 350
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
351 352 353
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
354 355 356
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
357

W
Wu Yi 已提交
358
        if args.update_method == "pserver":
359
            print_to_err(
360 361
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
362 363 364 365 366 367 368
            t = self.get_transpiler(trainer_id=args.trainer_id,
                                    main_program=fluid.default_main_program(),
                                    pserver_endpoints=args.endpoints,
                                    trainers=args.trainers,
                                    sync_mode=args.sync_mode,
                                    dc_asgd=args.dc_asgd,
                                    hogwild_mode=args.hogwild)
T
tangwei12 已提交
369

T
typhoonzero 已提交
370
            trainer_prog = t.get_trainer_program()
371
            print_to_err(
372 373
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
374
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
375 376 377
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
378
            config.nccl_comm_num = args.nccl_comm_num
379 380 381
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
382
            print_to_err(
383 384
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
385
            nccl2_t = fluid.DistributeTranspiler(config=config)
386 387 388 389 390
            nccl2_t.transpile(args.trainer_id,
                              program=fluid.default_main_program(),
                              startup_program=fluid.default_startup_program(),
                              trainers=args.endpoints,
                              current_endpoint=args.current_endpoint)
391
            print_to_err(
392 393
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
394
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
395
        else:
396
            print_to_err(
397 398
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
399
            trainer_prog = fluid.default_main_program()
400
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
401

402 403 404
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

405
        if args.use_cuda:
406 407
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
408 409 410
        else:
            place = fluid.CPUPlace()

411 412
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
413
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
414

W
Wu Yi 已提交
415 416
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
417

W
Wu Yi 已提交
418
        build_stra = fluid.BuildStrategy()
419 420 421
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
422

423 424 425 426
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
427 428 429
        if args.hogwild:
            build_stra.async_mode = True

430 431 432
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
433 434 435 436 437
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
438
        pass_builder = None
X
Xin Pan 已提交
439
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
440
            pass_builder = build_stra._finalize_strategy_and_create_passes()
441
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
442
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
443

W
Wu Yi 已提交
444
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
445 446
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
447
        else:
W
Wu Yi 已提交
448
            # case args.update_method == "nccl2_reduce_layer":
449 450
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
451

452
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
453
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
454
            loss_name=avg_cost.name,
W
Wu Yi 已提交
455
            build_strategy=build_stra,
W
Wu Yi 已提交
456
            exec_strategy=exec_strategy)
457
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
458 459 460 461 462 463 464

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
465
        reader_generator = train_reader()
T
typhoonzero 已提交
466

467 468
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
469
            if args.update_method != "local" and args.use_reader_alloc:
470 471 472 473 474 475 476
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
477

478
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
479
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
480
        out_losses = []
481
        for i in range(RUN_STEP):
482 483
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
484
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
485
            out_losses.append(loss[0])
486
            print_to_err(type(self).__name__, "run step %d finished" % i)
487 488 489
            if lr_scheduler is not None:
                lr_scheduler.step()

490
        print_to_err(type(self).__name__, "trainer run finished")
491

492
        print_to_out(out_losses)
T
typhoonzero 已提交
493 494


495
class TestParallelDyGraphRunnerBase(object):
496

497 498 499 500 501 502 503 504
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

505
    def _get_data(self, batch, args):
X
xiongkun 已提交
506 507 508 509
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
510
            new_batch = []
511

512 513 514
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
533 534 535
        else:
            return batch

536 537
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
538 539 540
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
541 542 543 544 545
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
546 547 548
        elif fluid.core.is_compiled_with_npu():
            device_id = int(os.getenv("FLAGS_selected_npus", "0"))
            place = fluid.NPUPlace(device_id)
549 550 551
        elif fluid.core.is_compiled_with_mlu():
            device_id = int(os.getenv("FLAGS_selected_mlus", "0"))
            place = fluid.MLUPlace(device_id)
552
        else:
X
xiongkun 已提交
553
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
554 555 556 557

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
558 559
            np.random.seed(seed)
            import random
560
            random.seed(seed)
561 562
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
563

564
            #if args.update_method == "nccl2":
565
            if args.update_method == "nccl2" or args.update_method == "bkcl" or args.update_method == "hccl" or args.update_method == "cncl":
566 567 568 569 570
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
571
                paddle.distributed.init_parallel_env()
572
                print_to_err(
573 574
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
575
                dygraph.parallel.prepare_context(strategy)
576 577 578 579 580 581
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
582
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
583 584 585 586 587 588 589 590 591 592

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

593
            out_losses = []
594
            print_to_err(type(self).__name__, "begin to run dygraph training")
595
            for step_id, data in enumerate(train_reader()):
596
                data = self._get_data(data, args)
597 598 599
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
600
                if step_id % 10 == 0:
601
                    print_to_err(
602
                        type(self).__name__,
603
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
604
                out_losses.append(loss.numpy())
605 606 607 608

                loss.backward()

                opt.minimize(loss)
609 610
                if not args.accumulate_gradient:
                    model.clear_gradients()
611
        print_to_out(out_losses)
612

613 614 615 616 617 618 619 620 621
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
622
        random.seed(seed)
623
        # get trainer id
L
LiYuRio 已提交
624 625
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
626 627

        # 3. init parallel env
X
xiongkun 已提交
628
        if args.update_method in ["nccl2", "gloo"]:
629 630 631 632
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
633
        if args.update_method in ["nccl2", "gloo"]:
634 635
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

651
    def run_use_fleet_api_trainer(self, args):
652 653 654 655 656 657 658 659 660
        import paddle.distributed.fleet as fleet
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
661
        random.seed(seed)
662
        # get trainer id
L
LiYuRio 已提交
663 664
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
665

666 667
        # set strategy
        strategy = fleet.DistributedStrategy()
668 669
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
670

671
        # 3. init parallel env
672
        if args.update_method == "nccl2" or "bkcl" or "hccl":
673
            fleet.init(is_collective=True, strategy=strategy)
674 675 676

        # 4. train model
        model, train_reader, opt = self.get_model()
677
        if args.update_method == "nccl2" or "bkcl" or "hccl":
678 679 680 681 682 683 684 685 686 687 688 689 690 691
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
692 693
            if not args.accumulate_gradient:
                opt.clear_grad()
694 695
        print_to_out(out_losses)

696

T
typhoonzero 已提交
697
def runtime_main(test_class):
W
Wu Yi 已提交
698
    parser = argparse.ArgumentParser(description='Run dist test.')
699 700 701 702
    parser.add_argument('--role',
                        type=str,
                        required=True,
                        choices=['pserver', 'trainer'])
W
Wu Yi 已提交
703
    parser.add_argument('--endpoints', type=str, required=False, default="")
704 705 706 707 708
    parser.add_argument('--update_method',
                        type=str,
                        default="local",
                        choices=[
                            "pserver", "nccl2", "bkcl", "local",
709
                            "nccl2_reduce_layer", "gloo", "hccl", "cncl"
710
                        ])
W
Wu Yi 已提交
711 712
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
713
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
714 715
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
716
    parser.add_argument('--use_pipeline', action='store_true')
717
    parser.add_argument('--use_fleet_api', action='store_true')
718
    parser.add_argument('--use_fleet_api_20', action='store_true')
719
    parser.add_argument('--use_local_sgd', action='store_true')
720
    parser.add_argument('--diff_batch', action='store_true')
721
    parser.add_argument('--ut4grad_allreduce', action='store_true')
722 723 724 725 726 727 728 729
    parser.add_argument('--hallreduce_inter_nranks',
                        type=int,
                        required=False,
                        default=2)
    parser.add_argument('--current_endpoint',
                        type=str,
                        required=False,
                        default="")
W
Wu Yi 已提交
730
    parser.add_argument('--sync_mode', action='store_true')
731
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
732
    parser.add_argument('--use_cpu', action='store_true')
733
    parser.add_argument('--use_xpu', action='store_true')
734
    parser.add_argument('--use_dgc', action='store_true')
735
    parser.add_argument('--use_npu', action='store_true')
736
    parser.add_argument('--use_mlu', action='store_true')
737
    parser.add_argument('--accumulate_gradient', action='store_true')
738
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
739
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
740
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
741
    parser.add_argument('--hogwild', action='store_true')
742
    parser.add_argument('--save_model', action='store_true')
743 744 745
    parser.add_argument('--use_reader_alloc',
                        action='store_true',
                        required=False)
746
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
747
    parser.add_argument('--lr', required=False, type=float, default=0.001)
748 749 750 751 752 753 754 755
    parser.add_argument('--batch_merge_repeat',
                        required=False,
                        type=int,
                        default=1)
    parser.add_argument('--nccl2_reduce_layer_local_run',
                        required=False,
                        type=bool,
                        default=False)
756
    parser.add_argument('--sync_batch_norm', action='store_true')
757 758 759 760
    parser.add_argument('--fuse_all_reduce',
                        required=False,
                        type=ast.literal_eval,
                        default=None)
W
Wu Yi 已提交
761 762

    args = parser.parse_args()
T
typhoonzero 已提交
763

X
xiongkun 已提交
764 765 766
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
767
    model = test_class()
W
Wu Yi 已提交
768
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
769
        model.run_pserver(args)
770 771
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
772 773
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
774 775
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
776
    else:
777
        model.run_trainer(args)
X
Xin Pan 已提交
778

M
minqiyang 已提交
779

Y
Yancey1989 已提交
780 781
import socket
from contextlib import closing
M
minqiyang 已提交
782

X
Xin Pan 已提交
783 784

class TestDistBase(unittest.TestCase):
785

W
Wu Yi 已提交
786 787 788
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

789 790 791
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
792
            self.__use_xpu = False
793
            self._use_dgc = False
794
            self.__use_npu = False
795
            self._use_mlu = False
796 797
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
798
            self.__use_xpu = False
799
            self.__use_npu = False
800
            self._use_mlu = False
801 802 803 804
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
805
            self.__use_npu = False
806
            self._use_mlu = False
807 808 809 810 811
        elif self._enforce_place == "NPU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = True
812 813 814 815 816 817 818
            self._use_mlu = False
        elif self._enforce_place == "MLU":
            self.__use_cuda = False
            self.__use_xpu = False
            self._use_dgc = False
            self.__use_npu = False
            self._use_mlu = True
819 820 821 822 823
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
824 825 826 827
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
828

X
Xin Pan 已提交
829 830 831
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
832
        self._port_set = set()
M
minqiyang 已提交
833
        self._python_interp = sys.executable
W
Wu Yi 已提交
834
        self._sync_mode = True
T
tangwei12 已提交
835
        self._hogwild_mode = False
836
        self._enforce_place = None
W
Wu Yi 已提交
837
        self._use_reduce = False
W
Wu Yi 已提交
838
        self._dc_asgd = False  # must use with async mode
839
        self._use_reader_alloc = True
W
Wu Yi 已提交
840
        self._nccl2_mode = False
841
        self._bkcl_mode = False
X
xiongkun 已提交
842
        self._gloo_mode = False  # now, support gloo backend
843
        self._hccl_mode = False
844
        self._cncl_mode = False
845
        self._pipeline_mode = False
846
        self._mp_mode = False
847
        self._diff_batch = False
W
Wu Yi 已提交
848 849 850 851 852
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
853
        self._lr = 0.001
854
        self._use_dgc = False
855
        self._dygraph = False
856
        self._nccl_comm_num = 1
857
        self._enable_backward_deps = False
858
        self._use_fleet_api = False
859
        self._use_fleet_api_20 = False
860 861
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
862
        self._use_hallreduce = False
863
        self._save_model = False
864
        self._fuse_all_reduce = None
865
        self._accumulate_gradient = False
866
        self._find_unused_parameters = False
W
Wu Yi 已提交
867
        self._setup_config()
868 869 870 871 872 873 874 875 876 877 878 879

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
880
            self._dist_port = DIST_UT_PORT
881

882
        self._after_setup_config()
X
Xin Pan 已提交
883

884 885 886 887 888
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
889
    def _find_free_port(self):
890

Y
Yancey1989 已提交
891 892 893 894
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
895
                print_to_err(
896
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
897 898 899 900 901 902 903
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
904

905 906 907 908 909
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
910
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
911 912 913 914 915 916 917 918
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
919
        ps0_cmd = ps_cmd % \
920 921
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
922
        ps1_cmd = ps_cmd % \
923 924
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
925 926 927 928

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
929

930 931
        print(ps0_cmd)
        print(ps1_cmd)
932 933 934 935
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
936

937
        print_to_err(type(self).__name__, "going to start pserver process 0")
938 939 940 941
        ps0_proc = subprocess.Popen(ps0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps0_pipe,
                                    env=required_envs)
942
        print_to_err(type(self).__name__, "going to start pserver process 1")
943 944 945 946
        ps1_proc = subprocess.Popen(ps1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=ps1_pipe,
                                    env=required_envs)
G
gongweibao 已提交
947

948
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
949

950 951 952 953 954
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
955
                   batch_merge_repeat=1,
956
                   log_name="",
X
xiongkun 已提交
957
                   devices="1"):
G
gongweibao 已提交
958

959 960 961 962 963 964
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

965 966
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
967

968 969 970 971
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
972 973
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
974

975
        if self.__use_cuda:
976
            cmd += " --use_cuda"
W
Wu Yi 已提交
977
            env_local = {
978 979 980 981 982 983 984 985
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
986 987 988
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
989 990 991 992 993 994 995
        elif self.__use_npu:
            cmd += " --use_npu"
            env_local = {
                "FLAGS_selected_npus": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
996 997 998
        else:
            env_local = {'CPU_NUM': '1'}

999
        # not use dgc in single card
1000
        if len(devices) > 1 and self._use_dgc:
1001 1002
            cmd += " --use_dgc"

1003 1004 1005
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1006 1007 1008
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1009 1010
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
1011

1012
        if check_error_log:
1013 1014
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1015 1016 1017 1018
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=err_log,
                                          env=env_local)
G
gongweibao 已提交
1019
        else:
1020 1021 1022 1023
            local_proc = subprocess.Popen(cmd.split(" "),
                                          stdout=subprocess.PIPE,
                                          stderr=subprocess.PIPE,
                                          env=env_local)
G
gongweibao 已提交
1024

1025 1026 1027 1028 1029 1030
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1031
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1032

W
Wu Yi 已提交
1033
        return pickle.loads(local_out)
1034

X
xiongkun 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1050
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1051
        # Run dist train to compare with local results
1052 1053 1054 1055
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
                                                          check_error_log,
                                                          envs,
                                                          log_name=log_name)
W
Wu Yi 已提交
1056

X
Xin Pan 已提交
1057
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1058

1059 1060 1061 1062 1063 1064 1065 1066
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1067
        tr0_cmd = tr_cmd % \
1068
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1069
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1070
        tr1_cmd = tr_cmd % \
1071
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1072
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1073 1074 1075 1076

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1077 1078 1079
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1080 1081 1082
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1083 1084 1085
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1086
        if self.__use_cuda:
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1097

W
Wu Yi 已提交
1098 1099
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1100 1101 1102 1103 1104

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1105

1106
        print_to_err(type(self).__name__, "going to start trainer process 0")
1107 1108 1109 1110
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)
1111
        print_to_err(type(self).__name__, "going to start trainer process 1")
1112 1113 1114 1115
        tr1_proc = subprocess.Popen(tr1_cmd.strip().split(" "),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
X
Xin Pan 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1129 1130
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1131

G
gongweibao 已提交
1132
        # close trainer file
1133 1134 1135 1136
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1137

W
Wu Yi 已提交
1138 1139
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1140

W
Wu Yi 已提交
1141 1142
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

X
xiongkun 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1165 1166
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
1183

X
xiongkun 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1202 1203 1204
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1205 1206 1207 1208 1209 1210 1211
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1212
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1213 1214
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1215 1216

        if self._use_reduce:
1217
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1218
        if self._use_reader_alloc:
1219
            tr_cmd += " --use_reader_alloc"
1220 1221
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1222
        if self.__use_cuda:
1223 1224
            tr_cmd += " --use_cuda"
            env.update({
1225
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1226
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1227
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1228 1229 1230
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1231
            })
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        elif self.__use_npu:
            tr_cmd += " --use_npu"
            env.update({
                "FLAGS_selected_npus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        elif self._use_mlu:
            tr_cmd += " --use_mlu"
            env.update({
                "FLAGS_selected_mlus": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "4",
            })
W
Wu Yi 已提交
1265
        else:
1266
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1267

1268
        if self._use_dgc:
1269 1270
            tr_cmd += " --use_dgc"

1271 1272 1273
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1274 1275 1276
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1277 1278
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1279
        if self._mp_mode:
W
WangXi 已提交
1280
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1281 1282

        if self._nccl_comm_num > 1:
1283
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1284

1285 1286
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1287

1288
        if self._enable_backward_deps:
1289
            tr_cmd += " --enable_backward_deps"
1290

1291 1292 1293
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1294
        if self._use_fleet_api:
1295
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1296 1297 1298 1299
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1300 1301
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1302

1303 1304 1305
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1306
        return tr_cmd, env
W
Wu Yi 已提交
1307

X
xiongkun 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1320 1321 1322 1323
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(model,
                                                        worker_endpoints[i],
                                                        update_method, i,
                                                        trainer_num)
X
xiongkun 已提交
1324 1325 1326 1327 1328 1329
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

1330 1331 1332
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1333 1334 1335 1336

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1337 1338 1339 1340
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
X
xiongkun 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1362 1363
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1364 1365
        if self._use_hallreduce:
            self._ps_endpoints = ""
1366 1367 1368

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1369
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1370 1371 1372 1373 1374 1375 1376
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1377
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1378

1379 1380
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1381

1382
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1383

1384 1385 1386 1387 1388 1389 1390 1391
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1392

1393 1394 1395
            path = os.path.join(self.temp_dir.name,
                                log_name + "_tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1396

1397
            print_to_err(
1398 1399
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1400 1401 1402 1403
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1415 1416 1417
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1418

1419
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

1440 1441
            path = os.path.join(self.temp_dir.name + "tr{}_err.log".format(i))
            tr_pipe = open(path, "wb")
1442 1443 1444 1445

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
1446 1447 1448 1449
            tr_proc = subprocess.Popen(tr_cmd.strip().split(" "),
                                       stdout=subprocess.PIPE,
                                       stderr=tr_pipe,
                                       env=tr_env)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1466
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1467 1468 1469 1470 1471 1472
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1473
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1474
            "FLAGS_rpc_retry_bind_port": "50",
1475
            "FLAGS_cudnn_deterministic": "1",
1476
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1477
            "http_proxy": "",
1478
            "NCCL_P2P_DISABLE": "1",
1479 1480
            "NCCL_SHM_DISABLE": "1",
            "FLAGS_CONVERT_GRAPH_TO_PROGRAM": "1"
1481 1482 1483
        }

        if check_error_log:
1484
            required_envs["GLOG_vmodule"] = \
1485 1486
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1487
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1488
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1489 1490
            required_envs["GLOG_logtostderr"] = "1"

1491 1492 1493 1494
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

1495 1496 1497 1498 1499 1500 1501 1502 1503
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1504
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1505
            need_envs.update({"FLAGS_enable_eager_mode": "1"})
1506
            with _test_eager_guard():
1507 1508 1509 1510 1511
                self.check_with_place_func(model_file=model_file,
                                           delta=delta,
                                           check_error_log=check_error_log,
                                           need_envs=need_envs,
                                           log_name=log_name)
1512
            need_envs.update({"FLAGS_enable_eager_mode": "0"})
1513 1514 1515 1516 1517
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1518
        else:
1519 1520 1521 1522 1523
            self.check_with_place_func(model_file=model_file,
                                       delta=delta,
                                       check_error_log=check_error_log,
                                       need_envs=need_envs,
                                       log_name=log_name)
1524 1525 1526 1527 1528 1529 1530

    def check_with_place_func(self,
                              model_file,
                              delta=1e-3,
                              check_error_log=False,
                              need_envs={},
                              log_name=""):
1531 1532
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1533 1534 1535 1536 1537 1538
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1539
            = self._run_local(model_file, required_envs,
1540 1541
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1542
        if self._nccl2_mode:
W
Wu Yi 已提交
1543 1544
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1545 1546
                    model_file,
                    required_envs,
1547 1548
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1549
                    log_name=log_name)
W
Wu Yi 已提交
1550 1551
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1552 1553
                    model_file,
                    required_envs,
1554 1555
                    update_method='nccl2',
                    check_error_log=check_error_log,
1556
                    log_name=log_name)
1557 1558 1559 1560 1561 1562 1563
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
X
xiongkun 已提交
1564 1565 1566 1567 1568 1569 1570 1571
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1572 1573 1574 1575 1576 1577 1578
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
                log_name=log_name)
1579 1580 1581 1582 1583 1584 1585
        elif self._cncl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='cncl',
                check_error_log=check_error_log,
                log_name=log_name)
1586
        elif self._pipeline_mode:
1587 1588 1589 1590
            tr0_losses, tr1_losses = self._run_pipeline(model_file,
                                                        required_envs,
                                                        check_error_log,
                                                        log_name=log_name)
W
Wu Yi 已提交
1591
        else:
1592 1593 1594 1595
            tr0_losses, tr1_losses = self._run_cluster(model_file,
                                                       required_envs,
                                                       check_error_log,
                                                       log_name=log_name)
1596 1597

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1598 1599 1600
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1601 1602 1603 1604
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1605 1606
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1607 1608 1609 1610 1611 1612 1613

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1614

1615 1616 1617 1618 1619 1620
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1621 1622 1623 1624 1625 1626
            multi_cards_losses = self._run_local(model_file,
                                                 required_envs,
                                                 check_error_log,
                                                 log_name=log_name +
                                                 "_dgc_2cards",
                                                 devices="0,1")
1627 1628

            self._use_dgc = False
1629 1630 1631 1632 1633
            base_losses = self._run_local(model_file,
                                          required_envs,
                                          check_error_log,
                                          log_name=log_name + "_base_2cards",
                                          devices="0,1")
1634 1635 1636 1637 1638 1639 1640 1641

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)