optimizer.py 64.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26
    _current_expected_place,
27 28
    default_main_program,
    device_guard,
29
    in_dygraph_mode,
30 31
    name_scope,
)
32
from paddle.regularizer import L2Decay
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174 175 176 177
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
178
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
179 180
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
181 182 183 184
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
185 186 187 188
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
189 190
                    " as list of dict"
                )
191 192 193 194
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
195
        self._name = name
196
        if framework.in_dygraph_mode():
M
MRXLT 已提交
197 198 199 200 201
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
202 203
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
204 205 206 207
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
208 209 210
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
211 212
                                % weight_decay.__str__()
                            )
213 214
                            break

215
        if not isinstance(learning_rate, (float, LRScheduler)):
216
            raise TypeError(
217 218 219
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
220
        if grad_clip is not None:
221
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
222 223 224 225 226 227 228 229 230
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
231

M
MRXLT 已提交
232
        self._dtype = None
L
Leo Chen 已提交
233 234
        # Infer the dtype form parameter
        if self._parameter_list:
235 236
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
237 238 239
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
240 241 242
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
243

M
MRXLT 已提交
244 245
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
246
        self._learning_rate_map = {}
M
MRXLT 已提交
247 248 249 250
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
251
        self._accumulators = defaultdict(lambda: {})
M
MRXLT 已提交
252 253 254
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
255
        self._param_device_map = {}
M
MRXLT 已提交
256
        self.clear_gradients = self.clear_grad
257 258
        self._default_dict = {
            'weight_decay': self.regularization,
259
            'grad_clip': self._grad_clip,
260 261 262 263 264 265 266 267
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
268

269
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
270
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
271 272
        self._use_multi_tensor = None

273
        self._param_dict = self._create_multi_tensor_dict()
274
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
275
        self._already_create_accumulater = set()
276

277 278 279 280 281 282 283 284
        # create master gradients' states
        self._create_master_grad_states()

    def _create_master_grad_states(self):
        # master gradients states
        self._master_grads = {}
        self._master_grad = False

285 286 287
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

288 289 290 291 292 293 294
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

295 296 297
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
298 299 300
    @framework.dygraph_only
    def state_dict(self):
        '''
301
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
302 303
        If the optimizer never be called(minimize function), the state_dict is empty.

304
        Args:
M
MRXLT 已提交
305 306 307 308
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
309

M
MRXLT 已提交
310 311 312 313
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
314
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
315 316 317 318 319 320 321 322 323

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
324 325 326 327
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
328
        # global step if use lr decay
329
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
330 331 332 333 334 335
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
336
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
337

338
        Args:
M
MRXLT 已提交
339 340 341
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
342

M
MRXLT 已提交
343 344 345 346 347
        Examples:
            .. code-block:: python

                import paddle

348
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
349

350 351
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
352

353
                scheduler = paddle.optimizer.lr.NoamDecay(
354 355 356 357 358 359
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
360

361
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
362 363 364
                adam.set_state_dict(opti_state_dict)

        '''
365
        if isinstance(self._learning_rate, LRScheduler):
366
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
367

368
        # NOTE: exclude learning rate scheduler's state from
369 370 371 372
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
373 374 375 376
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
377 378 379
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
380 381
                assert (
                    var_tmp.name in state_dict
382
                ), f"optimizer Tensor {var_tmp.name} not found"
M
MRXLT 已提交
383 384 385 386 387 388 389
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
390
                    load_para_np = np.array(load_para)
W
wanghuancoder 已提交
391
                elif isinstance(load_para, core.eager.Tensor):
392
                    load_para_np = np.array(load_para)
M
MRXLT 已提交
393 394 395
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
396 397 398 399 400 401 402 403 404 405 406
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
407

408 409 410 411 412
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
413 414 415 416 417 418 419

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
420 421 422 423 424 425
        def do_create():
            # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
            _lr_dtype = (
                paddle.get_default_dtype()
                if self._dtype is None
                else self._dtype
426
            )
427 428 429 430 431 432 433 434 435 436 437
            _lr_dtype = (
                paddle.float32
                if (
                    (
                        paddle.get_default_dtype() != "float16"
                        and _lr_dtype == paddle.float16
                    )
                    or (
                        paddle.get_default_dtype() != "bfloat16"
                        and _lr_dtype == paddle.bfloat16
                    )
438
                )
439
                else _lr_dtype
440
            )
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            if isinstance(self._learning_rate, LRScheduler):
                lr_var = self._global_learning_rate()
                # only create global lr_var once
                if not isinstance(lr_var, framework.Variable):
                    lr_name = unique_name.generate('learning_rate')
                    self._learning_rate._var_name = lr_name
                    lr_var = self.helper.create_global_variable(
                        name=lr_name,
                        shape=[],
                        persistable=True,
                        stop_gradient=True,
                        dtype=_lr_dtype,
                    )
                    main_prog = framework.default_main_program()
                    main_prog.lr_scheduler = self._learning_rate
                    main_prog.lr_var = lr_var

                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = lr_var

                lr_value = float(self._learning_rate())
                self.helper.set_variable_initializer(
                    lr_var,
                    initializer=paddle.nn.initializer.Constant(value=lr_value),
466
                )
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            elif isinstance(self._learning_rate, float):
                # only create global lr_var once
                lr = self._global_learning_rate()
                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = paddle.static.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[],
                        value=float(self._learning_rate),
                        dtype=_lr_dtype,
                        persistable=True,
                    )

        with paddle.fluid.framework.dygraph_guard_if_declarative():
            do_create()
M
MRXLT 已提交
485 486 487 488 489

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
490

491
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
492 493 494
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
495
            value (float): the value of learning rate
M
MRXLT 已提交
496 497 498

        Returns:
            None
499

M
MRXLT 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
522
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
523
            raise TypeError(
524
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
525 526
                % (type(value))
            )
527
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
528
            raise RuntimeError(
529
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
530
            )
531 532 533
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
534 535
            if in_dygraph_mode():
                place = _current_expected_place()
536 537 538 539 540 541 542
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
543 544
            else:
                global_block = framework.default_main_program().global_block()
545 546 547 548 549 550 551 552 553 554
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
555 556 557

    def get_lr(self):
        """
558
        Get current learning rate of optimizer.
559 560
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
561

M
MRXLT 已提交
562
        Returns:
563
            float: The current learning rate of optimizer.
M
MRXLT 已提交
564 565 566 567

        Examples:
            .. code-block:: python

568
                # train on default dynamic graph mode
M
MRXLT 已提交
569
                import paddle
570 571 572 573 574 575 576 577 578 579 580
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
581

582 583 584 585 586 587 588 589
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
590
                    adam.step()
591
                    scheduler.step()
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
611 612 613 614 615

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
616
            return self._learning_rate()
M
MRXLT 已提交
617 618 619 620 621 622 623 624 625 626 627

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
628
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
629 630 631 632 633 634 635
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
636 637 638 639
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
640
            else:
641 642 643 644
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
645 646
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
647 648 649
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    def _create_master_grad(self, grad):
        assert self._is_dtype_fp16_or_bf16(grad.dtype)
        if grad.name in self._master_grads:
            var = self._master_grads[grad.name]
        else:
            var_name = grad.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = grad.block.create_var(
                name=var_name,
                shape=grad.shape,
                value=0,
                dtype='float32',
                lod_level=grad.lod_level,
                persistable=grad.persistable,
                is_data=grad.is_data,
            )
            self._master_grads[grad.name] = var
        return var

M
MRXLT 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

720 721 722 723 724 725 726 727 728 729
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
730 731 732 733 734 735 736 737 738 739 740
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
741 742 743 744
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
745
            if framework.in_dygraph_mode():
M
MRXLT 已提交
746
                return self._accumulators[name][param.name]
747 748
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
749 750 751
                    name, param.name
                )
            )
752
        if shape is None:
M
MRXLT 已提交
753 754 755 756 757 758 759 760 761 762 763
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
764
            type=core.VarDesc.VarType.LOD_TENSOR,
M
MRXLT 已提交
765
            shape=shape,
766 767
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
768 769
        if device is None:
            device = self._get_device_for_param(param.name)
770

W
wanghuancoder 已提交
771 772 773 774
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
775 776 777 778 779 780 781
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
782
            )
783 784 785
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
786 787 788 789
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
790
                )
M
MRXLT 已提交
791

792
        if framework.in_dygraph_mode():
M
MRXLT 已提交
793
            if len(self._accumulators_holder) > 0:
794 795 796 797 798
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
799
                var.set_value(self._accumulators_holder.pop(var_name))
M
MRXLT 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
816 817 818 819
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
820 821
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
822 823 824
                    name, param.name
                )
            )
M
MRXLT 已提交
825 826
        return self._accumulators[name][param.name]

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
855 856
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
857
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
858 859
                param_name = param_and_grad[0].name
                ops = target_block.ops
860 861
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
862 863 864 865 866
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
867 868
                            device_attr_name
                        )
M
MRXLT 已提交
869 870 871 872 873 874 875 876
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

877 878 879
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
907 908 909
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
910
            target_block = framework.default_main_program().blocks[
911 912
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
913 914 915

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
916

M
MRXLT 已提交
917 918
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
919 920
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
921 922
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
923
        ]:
924
            if (
925 926 927
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
928
            ):
929
                if isinstance(parameters_and_grads, list):
930
                    assert param_group_idx == 0
931 932 933 934 935 936 937
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
938
                        param_group_idx,
939
                    )
940 941
                else:
                    self._update_param_group(parameters_and_grads)
942 943 944 945 946 947 948
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
949
                        param_group_idx,
950
                    )
951
            if framework.in_dygraph_mode():
952
                self._append_optimize_multi_tensor_op(
953 954 955
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
956
                )
957
            else:
958 959 960
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
961 962 963
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
964
                for param_and_grad in parameters_and_grads:
965 966 967 968
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
969 970 971
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
972 973
                    param_grad_list
                ), name_scope("optimizer"):
974 975 976
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
977 978 979
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
980
                        )
981
        else:
982
            if not framework.in_dygraph_mode():
983 984 985 986 987 988 989 990
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
991

992
            if isinstance(parameters_and_grads, list):
993 994 995 996 997 998 999 1000 1001
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
1002
            else:
1003 1004
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
1005 1006
                    p[0]
                    for p in params_acc_dict['params']
1007 1008
                    if not p[0].stop_gradient
                ]
1009 1010
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(target_block, params_acc_dict)
1011

1012
            if framework.in_dygraph_mode():
W
wanghuancoder 已提交
1013 1014 1015 1016
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
1017
                else:
W
wanghuancoder 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
1033
                                param_grad_dict = {}
W
wanghuancoder 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1045 1046
            else:
                for param_and_grad in parameters_and_grads:
1047 1048
                    if param_and_grad[1] is None:
                        continue
1049
                    with param_and_grad[0].block.program._optimized_guard(
1050 1051
                        param_and_grad
                    ), name_scope("optimizer"):
1052
                        if param_and_grad[0].stop_gradient is False:
1053
                            device = self._get_device_for_param(
1054 1055
                                param_and_grad[0].name
                            )
1056 1057
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1058 1059
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1071 1072 1073 1074 1075 1076 1077 1078
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1104 1105
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1106
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1107
                # This can be any optimizer supported by dygraph.
1108
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1109
                                            parameters = linear.parameters())
1110
                out = linear(x)
M
MRXLT 已提交
1111 1112 1113 1114 1115
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
1116
        if framework.in_dygraph_mode():
M
MRXLT 已提交
1117 1118 1119 1120
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1121 1122 1123 1124
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1125
        if framework.in_dygraph_mode():
1126
            parameter_list = parameters if parameters else self._parameter_list
1127

1128 1129 1130 1131 1132 1133 1134
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1135 1136
        else:
            if callbacks is None:
1137
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1138
            else:
1139
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1140
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1141 1142
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
M
MRXLT 已提交
1143
                "Maybe that you should call paddle.mean to process the current loss.".format(
1144 1145 1146 1147
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1148
            with program_guard(program, startup_program):
1149
                from paddle.incubate.autograd.utils import prim_enabled
1150

1151
                if prim_enabled():
1152 1153 1154
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1155
                else:
1156 1157 1158
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1180
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1197
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1198 1199

        # Add regularization if any
1200 1201 1202
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1203 1204 1205 1206

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1207 1208 1209
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
1221
        if framework.in_dygraph_mode():
1222 1223 1224 1225
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1226 1227 1228
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1229
                    params_grads = self.append_regularization_ops(
1230 1231
                        params_grads, self.regularization
                    )
1232 1233 1234
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1235
                        params_grads['params'] = grad_clip(
1236 1237
                            params_grads['params']
                        )
1238

1239
                    params_grads['params'] = self.append_regularization_ops(
1240 1241
                        params_grads['params'], self.regularization
                    )
1242 1243 1244
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1245
        else:
1246
            assert param_group_idx == 0
M
MRXLT 已提交
1247 1248 1249 1250 1251
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1252
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1253
        """Create and add backward regularization Operators
1254

1255 1256 1257
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1258
        if grad is None or (
1259 1260 1261 1262 1263 1264
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1265 1266
            return grad
        regularization_term = None
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

        # when master_grad is true in amp training, grad will be fp32, but param maybe fp16.
        # we get master weight when master_grad is true to avoid type mismatch error.
        def get_target_param(param, grad):
            target_param = param
            if param.dtype != grad.dtype:
                find_master = (
                    self._multi_precision
                    and self._is_dtype_fp16_or_bf16(param.dtype)
                )
                if find_master and len(self._master_weights) != 0:
                    target_param = self._master_weights[param.name]
                else:
                    target_param = param.astype(grad.dtype)
            return target_param

        param = get_target_param(param, grad)
1284 1285 1286 1287 1288 1289 1290 1291
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1292
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1293
            return _C_ops.add_n([grad, regularization_term])
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1308

1309 1310 1311
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1312

1313
            return new_grad
1314

1315 1316 1317
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1318
        r"""Create and add backward regularization Operators
1319

1320 1321 1322 1323
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1324

1325 1326 1327 1328 1329
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1330

1331 1332 1333
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1334

1335 1336 1337 1338
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
1339
        if framework.in_dygraph_mode():
1340
            for param, grad in parameters_and_grads:
1341
                new_grad = self._create_regularization_of_grad(
1342 1343
                    param, grad, regularization
                )
1344 1345 1346 1347 1348
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1349 1350 1351 1352 1353
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1354 1355 1356 1357
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1358 1359
                            % regularization.__str__()
                        )
1360 1361
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1362 1363
                            param, grad, regularization
                        )
1364 1365 1366
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1367 1368 1369
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1370 1371 1372
        param_no_trainable = {
            param.name for param in parameters if param.stop_gradient is True
        }
M
MRXLT 已提交
1373 1374 1375 1376 1377
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1378
    @framework.non_static_only
1379
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1380 1381
        """
        Clear the gradients of all optimized parameters for model.
1382 1383

        If not, new gradient will accumulat on previous gradient.
1384 1385

        There are two method to clear grad: set_to_zero or delete grad.
1386

1387 1388
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1389

M
MRXLT 已提交
1390 1391
        Returns:
            None
1392

M
MRXLT 已提交
1393 1394 1395 1396
        Examples:
            .. code-block:: python

                import paddle
1397

1398
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1399
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1400
                # This can be any optimizer supported by dygraph.
1401
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1402 1403 1404 1405 1406 1407 1408
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1409
        param_list = []
1410
        if self._parameter_list is None or not isinstance(
1411 1412
            self._parameter_list[0], dict
        ):
1413 1414
            for p in self._parameter_list:
                if not p.stop_gradient:
1415
                    param_list.append(p)
1416 1417 1418 1419
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1420
                        param_list.append(p)
1421

1422 1423
        for p in param_list:
            p.clear_gradient(set_to_zero)
M
MRXLT 已提交
1424

1425
    @imperative_base.no_grad()
1426 1427 1428
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1447 1448
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1449 1450 1451 1452
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1453

M
MRXLT 已提交
1454
                import paddle
M
MRXLT 已提交
1455
                linear = paddle.nn.Linear(10, 10)
1456 1457
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1458 1459 1460 1461 1462 1463 1464 1465
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1466
                loss.backward()
M
MRXLT 已提交
1467 1468 1469
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1470 1471 1472
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1473
        parameter_list = parameters if parameters else self._parameter_list
1474

1475 1476 1477 1478 1479 1480
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1481

1482 1483 1484
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1485 1486 1487

        return optimize_ops, params_grads

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
    def _declarative_step(self):
        """
        In declarative mode, we forward `call step` to `call apply_gradients`
        """
        params = (
            paddle.static.default_main_program().global_block().all_parameters()
        )
        assert not isinstance(
            self._parameter_list[0], dict
        ), "Only list of parameters is supported while using optimizer in @paddle.jit.static."
        selected_params = {param.name for param in self._parameter_list}
        parameters = [param for param in params if param.trainable]
        parameters = list(
            filter(
                lambda x: x.name in selected_params and hasattr(x, "grad"),
                parameters,
            )
        )
        params_grads = [(param, param.grad) for param in parameters]
        optimize_ops = self.apply_gradients(params_grads)
        return

1510
    @imperative_base.no_grad()
1511
    @framework.non_static_only
M
MRXLT 已提交
1512 1513
    def step(self):
        """
M
MRXLT 已提交
1514
        Execute the optimizer and update parameters once.
1515

M
MRXLT 已提交
1516 1517 1518 1519 1520 1521 1522
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1523

1524
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1525
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1526
                # This can be any optimizer supported by dygraph.
1527
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1528
                                        parameters = linear.parameters())
M
MRXLT 已提交
1529 1530 1531 1532 1533
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1534 1535 1536
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1547
            self._apply_optimize(
1548 1549 1550 1551
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1552
            )
1553 1554 1555

        else:
            # optimize parameters in groups
1556
            for idx, param_group in enumerate(self._param_groups):
1557
                params_grads = defaultdict(lambda: [])
1558 1559 1560 1561 1562 1563 1564
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1565 1566 1567
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1568 1569 1570 1571
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1572
                )
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1588 1589
                "but received set, please use list instead."
            )
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1603 1604
                "some parameters appear in more than one parameter group"
            )
1605 1606 1607 1608 1609 1610 1611 1612

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1613
            param.optimize_attr['learning_rate'] = param_group.get(
1614 1615
                'learning_rate', 1.0
            )
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1627 1628

    @framework.dygraph_only
1629
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1641
    def _append_optimize_multi_tensor_op(
1642
        self, target_block, parameters_and_grads, param_group_idx
1643
    ):
1644
        """
1645 1646 1647
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )