optimizer.py 59.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import logging
from collections import defaultdict

19
import paddle
20 21 22 23 24 25
from paddle.fluid.framework import (
    Variable,
    default_main_program,
    device_guard,
    name_scope,
)
M
MRXLT 已提交
26 27 28 29

from ..fluid import framework
from ..fluid import layers
from ..fluid import unique_name
30
from ..fluid.backward import _get_no_grad_set_name, append_backward
31 32 33 34 35
from ..fluid.clip import (
    GradientClipBase,
    append_gradient_clip_ops,
    error_clip_callback,
)
36
from ..fluid.framework import program_guard, Parameter
M
MRXLT 已提交
37 38 39 40
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
from ..fluid.dygraph import base as imperative_base
from paddle.fluid import core
41
from .lr import LRScheduler
42
from paddle import _C_ops, _legacy_C_ops
43 44 45 46 47 48
from paddle.fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _current_expected_place,
    in_dygraph_mode,
)
M
MRXLT 已提交
49

50 51
__all__ = []

M
MRXLT 已提交
52

53
@framework.static_only
54 55 56 57 58 59 60 61
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
62
    from paddle.incubate.autograd.primx import orig2prim, Transform
63

64
    program = default_main_program()
65 66 67
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
68
    block = program.current_block()
69
    for el in loss_list:
70 71 72
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


M
MRXLT 已提交
101
class Optimizer(object):
102
    r"""Optimizer Base class.
M
MRXLT 已提交
103 104 105 106 107 108

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
109 110
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
111
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
112 113 114 115
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
M
MRXLT 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
133 134
       Base class for optimizer.

M
MRXLT 已提交
135 136 137 138 139 140
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
141
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
142 143 144 145
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
146
            loss.backward()
M
MRXLT 已提交
147 148 149
            adam.step()
            adam.clear_grad()

150
            #Take the subclass sgd as an example
151
            #optimize parameters in linear_1 and linear2 in different options.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
168
                weight_decay=0.01)
R
Roc 已提交
169
            loss.backward()
170 171 172
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
173 174
    """

175
    @imperative_base.no_grad
176 177 178 179 180 181 182 183
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
184

185 186 187 188
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
189
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
190 191
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
192 193 194 195
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
196 197 198 199
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
200 201
                    " as list of dict"
                )
202 203 204 205
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
206
        self._name = name
J
Jiabin Yang 已提交
207
        if framework._non_static_mode():
M
MRXLT 已提交
208 209 210 211 212
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
213 214
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
215 216 217 218
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
219 220 221
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
222 223
                                % weight_decay.__str__()
                            )
224 225
                            break

226
        if not isinstance(learning_rate, (float, LRScheduler)):
227
            raise TypeError(
228 229 230
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
231 232 233 234 235 236 237
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
238

M
MRXLT 已提交
239 240 241 242 243
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
244

M
MRXLT 已提交
245
        self._dtype = None
L
Leo Chen 已提交
246 247
        # Infer the dtype form parameter
        if self._parameter_list:
248 249
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
250 251 252
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
253 254 255
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
256

M
MRXLT 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
270 271
        self._default_dict = {
            'weight_decay': self.regularization,
272
            'grad_clip': self._grad_clip,
273 274 275 276 277 278 279 280
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
281

282
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
283
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
284 285
        self._use_multi_tensor = None

286
        self._param_dict = self._create_multi_tensor_dict()
287 288 289 290 291
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

292 293 294 295 296 297 298
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

299 300 301
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
302 303 304
    @framework.dygraph_only
    def state_dict(self):
        '''
305
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
306 307
        If the optimizer never be called(minimize function), the state_dict is empty.

308
        Args:
M
MRXLT 已提交
309 310 311 312
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
313

M
MRXLT 已提交
314 315 316 317
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
318
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
319 320 321 322 323 324 325 326 327

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
328 329 330 331
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
332
        # global step if use lr decay
333
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
334 335 336 337 338 339
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
340
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
341

342
        Args:
M
MRXLT 已提交
343 344 345
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
346

M
MRXLT 已提交
347 348 349 350 351
        Examples:
            .. code-block:: python

                import paddle

352
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
353

354 355
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
356

357
                scheduler = paddle.optimizer.lr.NoamDecay(
358 359 360 361 362 363
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
364

365
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
366 367 368
                adam.set_state_dict(opti_state_dict)

        '''
369
        if isinstance(self._learning_rate, LRScheduler):
370
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
371

372
        # NOTE: exclude learning rate scheduler's state from
373 374 375 376
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
377 378 379 380
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
381 382 383
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
384 385 386
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
400 401 402 403 404 405 406 407 408 409 410
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
411

412 413 414 415 416
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
417 418 419 420 421 422 423

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
424
        # lr var can't be float16, for pure fp16 training, should extra handle the dtype for lr
425 426 427 428 429 430 431 432 433 434 435
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
                paddle.get_default_dtype() != "float16"
                and _lr_dtype == paddle.float16
            )
            else _lr_dtype
        )
436
        if isinstance(self._learning_rate, LRScheduler):
437 438 439 440 441
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
442 443 444 445 446 447 448
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
449 450 451
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
452

453
                self._learning_rate_map[
454 455
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
456

457 458
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
459 460
                lr_var, initializer=Constant(value=lr_value)
            )
461 462 463
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
464 465 466
            if isinstance(lr, framework.Variable):
                return
            else:
467 468 469
                self._learning_rate_map[
                    framework.default_main_program()
                ] = layers.create_global_var(
470 471 472
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
473
                    dtype=_lr_dtype,
474 475
                    persistable=True,
                )
M
MRXLT 已提交
476 477 478 479 480

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
481

482
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
483 484 485
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
486
            value (float): the value of learning rate
M
MRXLT 已提交
487 488 489

        Returns:
            None
490

M
MRXLT 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
513
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
514
            raise TypeError(
515
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
516 517
                % (type(value))
            )
518
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
519
            raise RuntimeError(
520
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
521
            )
522 523 524
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
525 526
            if in_dygraph_mode():
                place = _current_expected_place()
527 528 529 530 531 532 533
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
534 535

            elif _in_legacy_dygraph():
536 537 538 539 540 541 542 543 544
                _legacy_C_ops.fill_constant(
                    current_lr,
                    'value',
                    float(value),
                    'dtype',
                    current_lr.dtype,
                    'shape',
                    list(current_lr.shape),
                )
545 546
            else:
                global_block = framework.default_main_program().global_block()
547 548 549 550 551 552 553 554 555 556
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
557 558 559

    def get_lr(self):
        """
560
        Get current learning rate of optimizer.
561 562
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
563

M
MRXLT 已提交
564
        Returns:
565
            float: The current learning rate of optimizer.
M
MRXLT 已提交
566 567 568 569

        Examples:
            .. code-block:: python

570
                # train on default dynamic graph mode
M
MRXLT 已提交
571
                import paddle
572 573 574 575 576 577 578 579 580 581 582
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
583

584 585 586 587 588 589 590 591
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
592
                    adam.step()
593
                    scheduler.step()
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
613 614 615 616 617

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
618
            return self._learning_rate()
M
MRXLT 已提交
619 620 621 622 623 624 625 626 627 628 629

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
630
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
631 632 633 634 635 636 637
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
638 639 640 641
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
642
            else:
643 644 645 646
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
647 648
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
649 650 651
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

675 676 677 678 679 680 681 682 683 684
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
685 686 687 688 689 690 691 692 693 694 695
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
696 697 698 699
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
700
            if framework._non_static_mode():
M
MRXLT 已提交
701
                return self._accumulators[name][param.name]
702 703
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
704 705 706
                    name, param.name
                )
            )
707
        if shape is None:
M
MRXLT 已提交
708 709 710 711 712 713 714 715 716 717 718
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
719
            type=core.VarDesc.VarType.LOD_TENSOR
720 721
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
722
            shape=shape,
723 724
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
725 726 727 728
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
729 730
                var, initializer=Constant(value=float(fill_value))
            )
M
MRXLT 已提交
731

J
Jiabin Yang 已提交
732
        if framework._non_static_mode():
M
MRXLT 已提交
733
            if len(self._accumulators_holder) > 0:
734 735 736 737 738
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
756 757 758 759
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
760 761
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
762 763 764
                    name, param.name
                )
            )
M
MRXLT 已提交
765 766 767 768
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
769
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
770 771
                param_name = param_and_grad[0].name
                ops = target_block.ops
772 773
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
774 775 776 777 778
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
779 780
                            device_attr_name
                        )
M
MRXLT 已提交
781 782 783 784 785 786 787 788
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

789 790 791
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
819 820 821
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
822
            target_block = framework.default_main_program().blocks[
823 824
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
825 826 827

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
828

M
MRXLT 已提交
829 830
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
831 832
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
833 834
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
835
        ]:
836
            if (
837 838 839
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
840
            ):
841
                if isinstance(parameters_and_grads, list):
842
                    assert param_group_idx == 0
843 844 845 846 847 848 849
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
850
                        param_group_idx,
851
                    )
852 853
                else:
                    self._update_param_group(parameters_and_grads)
854 855 856 857 858 859 860
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
861
                        param_group_idx,
862
                    )
J
Jiabin Yang 已提交
863
            if framework._non_static_mode():
864
                self._append_optimize_multi_tensor_op(
865 866 867
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
868
                )
869
            else:
870 871 872
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
873 874 875
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
876
                for param_and_grad in parameters_and_grads:
877 878 879 880
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
881 882 883
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
884 885
                    param_grad_list
                ), name_scope("optimizer"):
886 887 888
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
889 890 891
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
892
                        )
893
        else:
J
Jiabin Yang 已提交
894
            if not framework._non_static_mode():
895 896 897 898 899 900 901 902
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
903

904
            if isinstance(parameters_and_grads, list):
905 906 907 908 909 910 911 912
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
913
            else:
914 915
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
916 917
                    p[0]
                    for p in params_acc_dict['params']
918 919 920 921
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
922
            if framework._non_static_mode():
923 924 925 926 927
                if isinstance(parameters_and_grads, list):
                    for param_and_grad in parameters_and_grads:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
928 929 930
                            self._append_optimize_op(
                                target_block, param_and_grad
                            )
931 932 933 934 935 936 937
                else:
                    for param_and_grad in parameters_and_grads['params']:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            param_grad_dict = dict()
                            param_grad_dict['params'] = param_and_grad
938 939 940 941 942 943 944 945 946 947
                            param_grad_dict.update(
                                {
                                    k: v
                                    for k, v in parameters_and_grads.items()
                                    if k != 'params'
                                }
                            )
                            self._append_optimize_op(
                                target_block, param_grad_dict
                            )
948 949
            else:
                for param_and_grad in parameters_and_grads:
950 951
                    if param_and_grad[1] is None:
                        continue
952
                    with param_and_grad[0].block.program._optimized_guard(
953 954
                        param_and_grad
                    ), name_scope("optimizer"):
955
                        if param_and_grad[0].stop_gradient is False:
956
                            device = self._get_device_for_param(
957 958
                                param_and_grad[0].name
                            )
959 960
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
961 962
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
963 964 965 966 967 968 969 970 971 972 973

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

974 975 976 977 978 979 980 981
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1010
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1011
                # This can be any optimizer supported by dygraph.
1012
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1013 1014 1015 1016 1017 1018 1019
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1020
        if framework._non_static_mode():
M
MRXLT 已提交
1021 1022 1023 1024
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1025 1026 1027 1028
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1029
        if framework._non_static_mode():
1030
            parameter_list = parameters if parameters else self._parameter_list
1031

M
MRXLT 已提交
1032
            params_grads = []
1033
            for param in parameter_list:
1034
                if param.stop_gradient:
M
MRXLT 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043
                    continue
                if param._grad_ivar() is not None:
                    # create gradient tensor
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1044
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1045
            program = loss.block.program
1046 1047
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1048
                "Maybe that you should call paddle.mean to process the current loss.".format(
1049 1050 1051 1052
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1053
            with program_guard(program, startup_program):
1054
                from paddle.incubate.autograd.utils import prim_enabled
1055

1056
                if prim_enabled():
1057 1058 1059
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1060
                else:
1061 1062 1063
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np

                inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                linear = paddle.nn.Linear(10, 10)
                inp = paddle.to_tensor(inp)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
1108 1109 1110
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1111 1112 1113 1114

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1115 1116 1117
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1129
        if framework._non_static_mode():
1130 1131 1132 1133
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1134 1135 1136
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1137
                    params_grads = self.append_regularization_ops(
1138 1139
                        params_grads, self.regularization
                    )
1140 1141 1142
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1143
                        params_grads['params'] = grad_clip(
1144 1145
                            params_grads['params']
                        )
1146

1147
                    params_grads['params'] = self.append_regularization_ops(
1148 1149
                        params_grads['params'], self.regularization
                    )
1150 1151 1152
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1153
        else:
1154
            assert param_group_idx == 0
M
MRXLT 已提交
1155 1156 1157 1158 1159
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1160
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1161
        """Create and add backward regularization Operators
1162

1163 1164 1165
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1166
        if grad is None or (
1167 1168 1169 1170 1171 1172
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1183
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1184
            return _C_ops.add_n([grad, regularization_term])
1185
        elif framework._in_legacy_dygraph():
1186
            return _legacy_C_ops.sum([grad, regularization_term])
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1199 1200
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1201 1202 1203

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1204
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1205 1206 1207

        return new_grad

1208 1209 1210
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1211
        r"""Create and add backward regularization Operators
1212

1213 1214 1215 1216
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1217

1218 1219 1220 1221 1222
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1223

1224 1225 1226
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1227

1228 1229 1230 1231
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1232
        if framework._non_static_mode():
1233
            for param, grad in parameters_and_grads:
1234
                new_grad = self._create_regularization_of_grad(
1235 1236
                    param, grad, regularization
                )
1237 1238 1239 1240 1241
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1242 1243 1244 1245 1246
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1247 1248 1249 1250
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1251 1252
                            % regularization.__str__()
                        )
1253 1254
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1255 1256
                            param, grad, regularization
                        )
1257 1258 1259
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1260 1261 1262
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1263
        param_no_trainable = set(
1264 1265
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1266 1267 1268 1269 1270 1271
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1272
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1273 1274
        """
        Clear the gradients of all optimized parameters for model.
1275 1276

        If not, new gradient will accumulat on previous gradient.
1277 1278

        There are two method to clear grad: set_to_zero or delete grad.
1279

1280 1281
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1282

M
MRXLT 已提交
1283 1284
        Returns:
            None
1285

M
MRXLT 已提交
1286 1287 1288 1289 1290
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
1291

M
MRXLT 已提交
1292 1293
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1294
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1295
                # This can be any optimizer supported by dygraph.
1296
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1297 1298 1299 1300 1301 1302 1303
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1304
        param_list = []
1305
        if self._parameter_list is None or not isinstance(
1306 1307
            self._parameter_list[0], dict
        ):
1308 1309
            for p in self._parameter_list:
                if not p.stop_gradient:
1310
                    param_list.append(p)
1311 1312 1313 1314
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1315
                        param_list.append(p)
1316

J
Jiabin Yang 已提交
1317
        if _in_eager_without_dygraph_check():
1318
            for p in param_list:
1319
                p.clear_gradient(set_to_zero)
1320 1321
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1322

1323
    @imperative_base.no_grad
1324 1325 1326
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1345 1346
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1347 1348 1349 1350
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1351

M
MRXLT 已提交
1352
                import paddle
M
MRXLT 已提交
1353
                linear = paddle.nn.Linear(10, 10)
1354 1355
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1356 1357 1358 1359 1360 1361 1362 1363
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1364
                loss.backward()
M
MRXLT 已提交
1365 1366 1367
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1368 1369 1370
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1371
        parameter_list = parameters if parameters else self._parameter_list
1372

1373 1374 1375 1376 1377 1378
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1379

1380 1381 1382
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1383 1384 1385

        return optimize_ops, params_grads

L
Leo Chen 已提交
1386
    @imperative_base.no_grad
M
MRXLT 已提交
1387 1388 1389
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1390
        Execute the optimizer and update parameters once.
1391

M
MRXLT 已提交
1392 1393 1394 1395 1396 1397 1398 1399
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
1400

M
MRXLT 已提交
1401 1402
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1403
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1404
                # This can be any optimizer supported by dygraph.
1405
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1406 1407 1408 1409 1410 1411
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1422
            self._apply_optimize(
1423 1424 1425 1426
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1427
            )
1428 1429 1430

        else:
            # optimize parameters in groups
1431
            for idx, param_group in enumerate(self._param_groups):
1432 1433 1434 1435 1436 1437 1438 1439
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1440 1441 1442
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1443 1444 1445 1446
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1447
                )
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1463 1464
                "but received set, please use list instead."
            )
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1478 1479
                "some parameters appear in more than one parameter group"
            )
1480 1481 1482 1483 1484

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1485

1486 1487 1488 1489
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1490
            param.optimize_attr['learning_rate'] = param_group.get(
1491 1492
                'learning_rate', 1.0
            )
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1504 1505

    @framework.dygraph_only
1506
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1518
    def _append_optimize_multi_tensor_op(
1519
        self, target_block, parameters_and_grads, param_group_idx
1520
    ):
1521
        """
1522 1523 1524
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass