Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6c9fa665
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6c9fa665
编写于
12月 25, 2022
作者:
W
wanghuancoder
提交者:
GitHub
12月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete legacy dygraph code in python/paddle/optimizer (#49308)
上级
983ae1d7
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
348 addition
and
600 deletion
+348
-600
python/paddle/optimizer/adadelta.py
python/paddle/optimizer/adadelta.py
+23
-23
python/paddle/optimizer/adam.py
python/paddle/optimizer/adam.py
+64
-134
python/paddle/optimizer/adamax.py
python/paddle/optimizer/adamax.py
+32
-51
python/paddle/optimizer/adamw.py
python/paddle/optimizer/adamw.py
+83
-119
python/paddle/optimizer/lamb.py
python/paddle/optimizer/lamb.py
+41
-69
python/paddle/optimizer/lr.py
python/paddle/optimizer/lr.py
+1
-10
python/paddle/optimizer/momentum.py
python/paddle/optimizer/momentum.py
+51
-105
python/paddle/optimizer/optimizer.py
python/paddle/optimizer/optimizer.py
+27
-53
python/paddle/optimizer/sgd.py
python/paddle/optimizer/sgd.py
+26
-36
未找到文件。
python/paddle/optimizer/adadelta.py
浏览文件 @
6c9fa665
...
...
@@ -170,29 +170,29 @@ class Adadelta(Optimizer):
self
.
_epsilon
,
)
return
None
if
not
isinstance
(
block
,
framework
.
Block
):
raise
TypeError
(
"block is not instance of framework.Block."
)
# Create the adadelta optimizer op
adadelta_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"AvgSquaredGrad"
:
avg_squared_grad_acc
,
"AvgSquaredUpdate"
:
avg_squared_update_acc
,
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"AvgSquaredGradOut"
:
avg_squared_grad_acc
,
"AvgSquaredUpdateOut"
:
avg_squared_update_acc
,
},
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"rho"
:
self
.
_rho
},
stop_gradient
=
True
,
)
return
adadelta_op
else
:
if
not
isinstance
(
block
,
framework
.
Block
):
raise
TypeError
(
"block is not instance of framework.Block."
)
# Create the adadelta optimizer op
adadelta_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"AvgSquaredGrad"
:
avg_squared_grad_acc
,
"AvgSquaredUpdate"
:
avg_squared_update_acc
,
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"AvgSquaredGradOut"
:
avg_squared_grad_acc
,
"AvgSquaredUpdateOut"
:
avg_squared_update_acc
,
},
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"rho"
:
self
.
_rho
},
stop_gradient
=
True
,
)
return
adadelta_op
def
_update_param_group
(
self
,
parameters
):
self
.
_epsilon
=
parameters
.
get
(
'epsilon'
,
self
.
_default_dict
[
'epsilon'
])
...
...
python/paddle/optimizer/adam.py
浏览文件 @
6c9fa665
...
...
@@ -16,7 +16,7 @@ import warnings
from
collections
import
defaultdict
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle
import
_C_ops
from
..fluid
import
core
,
framework
,
unique_name
from
..fluid.dygraph
import
base
as
imperative_base
...
...
@@ -393,98 +393,55 @@ class Adam(Optimizer):
)
return
None
if
framework
.
_in_legacy_dygraph
():
_beta1
=
(
self
.
_beta1
if
not
isinstance
(
self
.
_beta1
,
Variable
)
else
self
.
_beta1
.
numpy
().
item
(
0
)
)
_beta2
=
(
self
.
_beta2
if
not
isinstance
(
self
.
_beta2
,
Variable
)
else
self
.
_beta2
.
numpy
().
item
(
0
)
)
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
adam
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
param_and_grad
[
0
],
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
'epsilon'
,
self
.
_epsilon
,
'lazy_mode'
,
self
.
_lazy_mode
,
'min_row_size_to_use_multithread'
,
1000
,
'beta1'
,
_beta1
,
'beta2'
,
_beta2
,
'multi_precision'
,
find_master
,
)
return
None
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"LearningRate"
:
[
lr
],
"Moment1"
:
[
moment1
],
"Moment2"
:
[
moment2
],
"Beta1Pow"
:
[
beta1_pow_acc
],
"Beta2Pow"
:
[
beta2_pow_acc
],
}
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"Moment1Out"
:
[
moment1
],
"Moment2Out"
:
[
moment2
],
"Beta1PowOut"
:
[
beta1_pow_acc
],
"Beta2PowOut"
:
[
beta2_pow_acc
],
}
attrs
=
{
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
,
"multi_precision"
:
find_master
,
}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'Beta1Tensor'
]
=
self
.
_beta1
else
:
attrs
[
'beta1'
]
=
self
.
_beta1
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'Beta2Tensor'
]
=
self
.
_beta2
else
:
attrs
[
'beta2'
]
=
self
.
_beta2
if
isinstance
(
self
.
_epsilon
,
Variable
):
inputs
[
'EpsilonTensor'
]
=
self
.
_epsilon
else
:
attrs
[
'epsilon'
]
=
self
.
_epsilon
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
adam_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"LearningRate"
:
[
lr
],
"Moment1"
:
[
moment1
],
"Moment2"
:
[
moment2
],
"Beta1Pow"
:
[
beta1_pow_acc
],
"Beta2Pow"
:
[
beta2_pow_acc
],
}
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"Moment1Out"
:
[
moment1
],
"Moment2Out"
:
[
moment2
],
"Beta1PowOut"
:
[
beta1_pow_acc
],
"Beta2PowOut"
:
[
beta2_pow_acc
],
}
attrs
=
{
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
,
"multi_precision"
:
find_master
,
}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'Beta1Tensor'
]
=
self
.
_beta1
else
:
attrs
[
'beta1'
]
=
self
.
_beta1
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'Beta2Tensor'
]
=
self
.
_beta2
else
:
attrs
[
'beta2'
]
=
self
.
_beta2
if
isinstance
(
self
.
_epsilon
,
Variable
):
inputs
[
'EpsilonTensor'
]
=
self
.
_epsilon
else
:
attrs
[
'epsilon'
]
=
self
.
_epsilon
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
adam_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
adam_op
return
adam_op
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
...
...
@@ -729,55 +686,28 @@ class Adam(Optimizer):
else
self
.
_beta2
.
numpy
().
item
(
0
)
)
if
framework
.
_non_static
_mode
():
if
framework
.
in_dygraph
_mode
():
master_weight
=
self
.
_master_weight_dict
[
key
]
master_weight
=
(
master_weight
[
param_group_idx
]
if
master_weight
is
not
None
else
None
)
if
in_dygraph_mode
():
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
lr_dict
[
key
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
_beta1
,
_beta2
,
self
.
_epsilon
,
find_master
,
False
,
)
else
:
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
merged_adam
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
lr_dict
[
key
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
self
.
_param_dict
[
key
][
param_group_idx
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
'epsilon'
,
self
.
_epsilon
,
'beta1'
,
_beta1
,
'beta2'
,
_beta2
,
'multi_precision'
,
find_master
,
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
lr_dict
[
key
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
_beta1
,
_beta2
,
self
.
_epsilon
,
find_master
,
False
,
)
else
:
inputs
=
{
"Param"
:
self
.
_param_dict
[
key
][
param_group_idx
],
...
...
python/paddle/optimizer/adamax.py
浏览文件 @
6c9fa665
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle
import
_C_ops
from
..fluid
import
framework
from
..fluid.dygraph
import
no_grad
...
...
@@ -210,24 +210,6 @@ class Adamax(Optimizer):
self
.
_beta2
,
self
.
_epsilon
,
)
elif
framework
.
_in_legacy_dygraph
():
_legacy_C_ops
.
adamax
(
param_and_grad
[
0
],
param_and_grad
[
1
],
self
.
_create_param_lr
(
param_and_grad
),
moment
,
inf_norm
,
beta1_pow_acc
,
param_and_grad
[
0
],
moment
,
inf_norm
,
"beta1"
,
self
.
_beta1
,
"beta2"
,
self
.
_beta2
,
"epsilon"
,
self
.
_epsilon
,
)
else
:
# create the adamax optimize op
adamax_op
=
block
.
append_op
(
...
...
@@ -271,20 +253,20 @@ class Adamax(Optimizer):
beta1_pow_acc
,
self
.
_beta1
,
0.0
,
True
)
beta1_pow_acc
.
copy_
(
tmp
,
False
)
continue
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]
),
name_scope
(
'adamax'
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta1_pow_acc
},
outputs
=
{
"Out"
:
beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
},
stop_gradient
=
True
,
)
else
:
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]
),
name_scope
(
'adamax'
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta1_pow_acc
},
outputs
=
{
"Out"
:
beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
},
stop_gradient
=
True
,
)
else
:
for
param
,
grad
in
parameters_and_grads
[
'params'
]:
if
grad
is
None
or
param
.
stop_gradient
is
True
:
...
...
@@ -301,24 +283,23 @@ class Adamax(Optimizer):
beta1_pow_acc
,
self
.
_beta1
,
0.0
,
True
)
beta1_pow_acc
.
copy_
(
tmp
,
False
)
continue
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]
),
name_scope
(
'adamax'
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
self
.
_beta1
=
parameters_and_grads
.
get
(
'beta1'
,
self
.
_default_dict
[
'beta1'
]
)
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta1_pow_acc
},
outputs
=
{
"Out"
:
beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
},
stop_gradient
=
True
,
)
else
:
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]
),
name_scope
(
'adamax'
):
beta1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param
)
self
.
_beta1
=
parameters_and_grads
.
get
(
'beta1'
,
self
.
_default_dict
[
'beta1'
]
)
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
beta1_pow_acc
},
outputs
=
{
"Out"
:
beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
},
stop_gradient
=
True
,
)
def
_update_param_group
(
self
,
parameters
):
self
.
_beta1
=
parameters
.
get
(
'beta1'
,
self
.
_default_dict
[
'beta1'
])
...
...
python/paddle/optimizer/adamw.py
浏览文件 @
6c9fa665
...
...
@@ -18,7 +18,7 @@ from collections.abc import Callable
import
paddle
from
..
import
_C_ops
,
_legacy_C_ops
from
..
import
_C_ops
from
..fluid
import
core
,
framework
,
unique_name
from
..fluid.clip
import
GradientClipBase
from
..fluid.dygraph
import
base
as
imperative_base
...
...
@@ -473,7 +473,7 @@ class AdamW(Optimizer):
lr
=
self
.
_create_param_lr
(
param_and_grad
)
# create the adamw optimize op
if
framework
.
_non_static
_mode
():
if
framework
.
in_dygraph
_mode
():
lr_ratio_
=
(
1.0
if
self
.
_lr_ratio
is
None
...
...
@@ -491,126 +491,90 @@ class AdamW(Optimizer):
else
self
.
_beta2
.
numpy
().
item
(
0
)
)
if
framework
.
in_dygraph_mode
():
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
adamw_
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
_beta1
,
_beta2
,
self
.
_epsilon
,
lr_ratio_
,
self
.
_weight_decay
,
with_decay
,
self
.
_lazy_mode
,
1000
,
find_master
,
False
,
)
else
:
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
adamw
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
param_and_grad
[
0
],
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
'epsilon'
,
self
.
_epsilon
,
'lazy_mode'
,
self
.
_lazy_mode
,
'min_row_size_to_use_multithread'
,
1000
,
'beta1'
,
_beta1
,
'beta2'
,
_beta2
,
"with_decay"
,
with_decay
,
'coeff'
,
self
.
_weight_decay
,
'multi_precision'
,
find_master
,
'lr_ratio'
,
lr_ratio_
,
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
adamw_
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
_beta1
,
_beta2
,
self
.
_epsilon
,
lr_ratio_
,
self
.
_weight_decay
,
with_decay
,
self
.
_lazy_mode
,
1000
,
find_master
,
False
,
)
return
None
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"LearningRate"
:
[
lr
],
"Moment1"
:
[
moment1
],
"Moment2"
:
[
moment2
],
"Beta1Pow"
:
[
beta1_pow_acc
],
"Beta2Pow"
:
[
beta2_pow_acc
],
}
# Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
inputs
[
'SkipUpdate'
]
=
found_inf
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"Moment1Out"
:
[
moment1
],
"Moment2Out"
:
[
moment2
],
"Beta1PowOut"
:
[
beta1_pow_acc
],
"Beta2PowOut"
:
[
beta2_pow_acc
],
}
attrs
=
{
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
,
"multi_precision"
:
find_master
,
"with_decay"
:
with_decay
,
"coeff"
:
self
.
_weight_decay
,
"lr_ratio"
:
1.0
if
self
.
_lr_ratio
is
None
else
self
.
_lr_ratio
(
param_and_grad
[
0
]),
}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'Beta1Tensor'
]
=
self
.
_beta1
else
:
attrs
[
'beta1'
]
=
self
.
_beta1
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'Beta2Tensor'
]
=
self
.
_beta2
else
:
attrs
[
'beta2'
]
=
self
.
_beta2
if
isinstance
(
self
.
_epsilon
,
Variable
):
inputs
[
'EpsilonTensor'
]
=
self
.
_epsilon
else
:
attrs
[
'epsilon'
]
=
self
.
_epsilon
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
adamw_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"LearningRate"
:
[
lr
],
"Moment1"
:
[
moment1
],
"Moment2"
:
[
moment2
],
"Beta1Pow"
:
[
beta1_pow_acc
],
"Beta2Pow"
:
[
beta2_pow_acc
],
}
# Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
inputs
[
'SkipUpdate'
]
=
found_inf
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"Moment1Out"
:
[
moment1
],
"Moment2Out"
:
[
moment2
],
"Beta1PowOut"
:
[
beta1_pow_acc
],
"Beta2PowOut"
:
[
beta2_pow_acc
],
}
attrs
=
{
"lazy_mode"
:
self
.
_lazy_mode
,
"min_row_size_to_use_multithread"
:
1000
,
"multi_precision"
:
find_master
,
"with_decay"
:
with_decay
,
"coeff"
:
self
.
_weight_decay
,
"lr_ratio"
:
1.0
if
self
.
_lr_ratio
is
None
else
self
.
_lr_ratio
(
param_and_grad
[
0
]),
}
if
isinstance
(
self
.
_beta1
,
Variable
):
inputs
[
'Beta1Tensor'
]
=
self
.
_beta1
else
:
attrs
[
'beta1'
]
=
self
.
_beta1
if
isinstance
(
self
.
_beta2
,
Variable
):
inputs
[
'Beta2Tensor'
]
=
self
.
_beta2
else
:
attrs
[
'beta2'
]
=
self
.
_beta2
if
isinstance
(
self
.
_epsilon
,
Variable
):
inputs
[
'EpsilonTensor'
]
=
self
.
_epsilon
else
:
attrs
[
'epsilon'
]
=
self
.
_epsilon
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
adamw_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
adamw_op
return
adamw_op
def
__str__
(
self
):
return
" "
.
join
([
"Weight Decay, params:"
,
","
.
join
(
self
.
_params_name
)])
...
...
python/paddle/optimizer/lamb.py
浏览文件 @
6c9fa665
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle
import
_C_ops
from
paddle.fluid.executor
import
global_scope
from
..fluid
import
core
,
framework
,
unique_name
...
...
@@ -313,76 +313,48 @@ class Lamb(Optimizer):
find_master
,
)
return
None
if
framework
.
_non_static_mode
():
_legacy_C_ops
.
lamb
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
param_and_grad
[
0
],
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
'beta1'
,
self
.
_beta1
,
'beta2'
,
self
.
_beta2
,
'epsilon'
,
self
.
_epsilon
,
'weight_decay'
,
weight_decay
,
'multi_precision'
,
find_master
,
else
:
# create the lamb optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
lr
,
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
,
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
,
"Beta1PowOut"
:
beta1_pow_acc
,
"Beta2PowOut"
:
beta2_pow_acc
,
}
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
,
"weight_decay"
:
weight_decay
,
"multi_precision"
:
find_master
,
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
if
found_inf
:
inputs
[
"SkipUpdate"
]
=
found_inf
lamb_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
None
# create the lamb optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
lr
,
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
,
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
,
"Beta1PowOut"
:
beta1_pow_acc
,
"Beta2PowOut"
:
beta2_pow_acc
,
}
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
,
"weight_decay"
:
weight_decay
,
"multi_precision"
:
find_master
,
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
if
found_inf
:
inputs
[
"SkipUpdate"
]
=
found_inf
lamb_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
lamb_op
return
lamb_op
def
_update_param_group
(
self
,
parameters
):
self
.
_beta1
=
parameters
.
get
(
'beta1'
,
self
.
_default_dict
[
'beta1'
])
...
...
python/paddle/optimizer/lr.py
浏览文件 @
6c9fa665
...
...
@@ -20,8 +20,6 @@ import numpy
import
paddle.fluid.core
as
core
from
paddle
import
Tensor
from
..fluid.framework
import
_in_legacy_dygraph
__all__
=
[
# noqa
'LRScheduler'
,
'NoamDecay'
,
...
...
@@ -1395,15 +1393,8 @@ class ReduceOnPlateau(LRScheduler):
else
:
self
.
last_epoch
=
epoch
if
not
_in_legacy_dygraph
():
tmp
=
core
.
eager
.
Tensor
else
:
# need to declarate explicitly
from
paddle.framework
import
VarBase
as
Tensor
tmp
=
Tensor
# loss must be float, numpy.ndarray or 1-D Tensor with shape [1]
if
isinstance
(
metrics
,
(
tmp
,
numpy
.
ndarray
)):
if
isinstance
(
metrics
,
(
core
.
eager
.
Tensor
,
numpy
.
ndarray
)):
assert
len
(
metrics
.
shape
)
==
1
and
metrics
.
shape
[
0
]
==
1
,
(
"the metrics.shape "
"should be (1L,), but the current metrics.shape is {}. Maybe that "
...
...
python/paddle/optimizer/momentum.py
浏览文件 @
6c9fa665
...
...
@@ -15,8 +15,8 @@
import
warnings
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle.fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
in_dygraph_mode
from
paddle.fluid.regularizer
import
L2DecayRegularizer
from
..fluid
import
core
,
framework
,
unique_name
...
...
@@ -333,30 +333,6 @@ class Momentum(Optimizer):
else
None
)
if
_in_legacy_dygraph
():
if
isinstance
(
param_and_grad
,
dict
):
self
.
_update_regularization
(
param_and_grad
[
'weight_decay'
])
_
,
_
,
_
=
_legacy_C_ops
.
momentum
(
param_and_grad
[
0
],
param_and_grad
[
1
],
velocity_acc
,
lr
,
master_weight
,
param_and_grad
[
0
],
velocity_acc
,
master_weight
,
'mu'
,
self
.
_momentum
,
'use_nesterov'
,
self
.
_use_nesterov
,
'regularization_method'
,
regularization_method
,
'regularization_coeff'
,
regularization_coeff
,
'multi_precision'
,
find_master
,
)
return
None
if
in_dygraph_mode
():
if
isinstance
(
param_and_grad
,
dict
):
self
.
_update_regularization
(
param_and_grad
[
'weight_decay'
])
...
...
@@ -373,42 +349,42 @@ class Momentum(Optimizer):
find_master
,
self
.
_rescale_grad
,
)
else
:
attrs
=
{
"mu"
:
self
.
_momentum
,
"use_nesterov"
:
self
.
_use_nesterov
,
"regularization_method"
:
regularization_method
,
"regularization_coeff"
:
regularization_coeff
,
"multi_precision"
:
find_master
,
"rescale_grad"
:
self
.
_rescale_grad
,
}
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"Velocity"
:
[
velocity_acc
],
"LearningRate"
:
[
lr
],
}
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"VelocityOut"
:
[
velocity_acc
],
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
# create the momentum optimize op
momentum_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
attrs
=
{
"mu"
:
self
.
_momentum
,
"use_nesterov"
:
self
.
_use_nesterov
,
"regularization_method"
:
regularization_method
,
"regularization_coeff"
:
regularization_coeff
,
"multi_precision"
:
find_master
,
"rescale_grad"
:
self
.
_rescale_grad
,
}
inputs
=
{
"Param"
:
[
param_and_grad
[
0
]],
"Grad"
:
[
param_and_grad
[
1
]],
"Velocity"
:
[
velocity_acc
],
"LearningRate"
:
[
lr
],
}
outputs
=
{
"ParamOut"
:
[
param_and_grad
[
0
]],
"VelocityOut"
:
[
velocity_acc
],
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
# create the momentum optimize op
momentum_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
momentum_op
return
momentum_op
def
_multi_tensor_init
(
self
,
target_block
,
parameters
,
param_group_idx
):
"""
...
...
@@ -553,50 +529,20 @@ class Momentum(Optimizer):
else
None
)
if
framework
.
_non_static_mode
():
if
in_dygraph_mode
():
_
,
_
,
_
=
_C_ops
.
merged_momentum_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
lr_dict
[
key
],
master_weight
,
self
.
_momentum
,
self
.
_use_nesterov
,
self
.
_regularization_method_dict
[
key
][
param_group_idx
],
self
.
_regularization_coeff_dict
[
key
][
param_group_idx
],
find_master
,
self
.
_rescale_grad
,
)
else
:
_
,
_
,
_
=
_legacy_C_ops
.
merged_momentum
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
lr_dict
[
key
],
master_weight
,
self
.
_param_dict
[
key
][
param_group_idx
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
master_weight
,
'mu'
,
self
.
_momentum
,
'use_nesterov'
,
self
.
_use_nesterov
,
'regularization_method'
,
self
.
_regularization_method_dict
[
key
][
param_group_idx
],
'regularization_coeff'
,
self
.
_regularization_coeff_dict
[
key
][
param_group_idx
],
'multi_precision'
,
find_master
,
)
if
in_dygraph_mode
():
_
,
_
,
_
=
_C_ops
.
merged_momentum_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
lr_dict
[
key
],
master_weight
,
self
.
_momentum
,
self
.
_use_nesterov
,
self
.
_regularization_method_dict
[
key
][
param_group_idx
],
self
.
_regularization_coeff_dict
[
key
][
param_group_idx
],
find_master
,
self
.
_rescale_grad
,
)
else
:
inputs
=
{
"Param"
:
self
.
_param_dict
[
key
][
param_group_idx
],
...
...
python/paddle/optimizer/optimizer.py
浏览文件 @
6c9fa665
...
...
@@ -18,13 +18,12 @@ from collections import defaultdict
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
(
Variable
,
_current_expected_place
,
_in_eager_without_dygraph_check
,
_in_legacy_dygraph
,
default_main_program
,
device_guard
,
in_dygraph_mode
,
...
...
@@ -534,17 +533,6 @@ class Optimizer:
current_lr
.
dtype
,
place
,
)
elif
_in_legacy_dygraph
():
_legacy_C_ops
.
fill_constant
(
current_lr
,
'value'
,
float
(
value
),
'dtype'
,
current_lr
.
dtype
,
'shape'
,
list
(
current_lr
.
shape
),
)
else
:
global_block
=
framework
.
default_main_program
().
global_block
()
global_block
.
append_op
(
...
...
@@ -1042,28 +1030,16 @@ class Optimizer:
if
self
.
_dtype
is
None
:
self
.
_dtype
=
loss
.
dtype
if
framework
.
_non_static
_mode
():
if
framework
.
in_dygraph
_mode
():
parameter_list
=
parameters
if
parameters
else
self
.
_parameter_list
if
framework
.
in_dygraph_mode
():
# It is very time-consuming to call c++ functions in a loop on the python side.
# We put this part of the code on the c++ side to improve the speed in eager mode.
params_grads
=
[]
grads
=
core
.
eager
.
get_all_grads
(
parameter_list
)
for
index
,
grad
in
enumerate
(
grads
):
if
grad
is
not
None
:
params_grads
.
append
((
parameter_list
[
index
],
grad
))
else
:
# Keep the original code to support legacy mode.
# Delete the else branch when the legacy mode exits.
params_grads
=
[]
for
param
in
parameter_list
:
if
param
.
stop_gradient
:
continue
if
param
.
_grad_ivar
()
is
not
None
:
# create gradient tensor
grad_var
=
param
.
_grad_ivar
()
params_grads
.
append
((
param
,
grad_var
))
# It is very time-consuming to call c++ functions in a loop on the python side.
# We put this part of the code on the c++ side to improve the speed in eager mode.
params_grads
=
[]
grads
=
core
.
eager
.
get_all_grads
(
parameter_list
)
for
index
,
grad
in
enumerate
(
grads
):
if
grad
is
not
None
:
params_grads
.
append
((
parameter_list
[
index
],
grad
))
else
:
if
callbacks
is
None
:
callbacks
=
[
error_clip_callback
]
...
...
@@ -1207,28 +1183,26 @@ class Optimizer:
if
framework
.
in_dygraph_mode
():
return
_C_ops
.
add_n
([
grad
,
regularization_term
])
elif
framework
.
_in_legacy_dygraph
():
return
_legacy_C_ops
.
sum
([
grad
,
regularization_term
])
new_grad
=
grad
if
grad
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
# FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
# the grad's type and name will be changed. But the gradient's name
# is used in ParallelExecutor Reduce mode, so I add a flag for
# the new_grad here.
new_grad
=
grad
.
block
.
create_var
(
name
=
grad
.
name
+
core
.
kNewGradSuffix
(),
dtype
=
param
.
dtype
,
shape
=
param
.
shape
,
lod_level
=
param
.
lod_level
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
)
else
:
new_grad
=
grad
if
grad
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
# FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
# the grad's type and name will be changed. But the gradient's name
# is used in ParallelExecutor Reduce mode, so I add a flag for
# the new_grad here.
new_grad
=
grad
.
block
.
create_var
(
name
=
grad
.
name
+
core
.
kNewGradSuffix
(),
dtype
=
param
.
dtype
,
shape
=
param
.
shape
,
lod_level
=
param
.
lod_level
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
)
inputs
=
{
"X"
:
[
grad
,
regularization_term
]}
outputs
=
{
"Out"
:
[
new_grad
]}
grad
.
block
.
append_op
(
type
=
'sum'
,
inputs
=
inputs
,
outputs
=
outputs
)
inputs
=
{
"X"
:
[
grad
,
regularization_term
]}
outputs
=
{
"Out"
:
[
new_grad
]}
grad
.
block
.
append_op
(
type
=
'sum'
,
inputs
=
inputs
,
outputs
=
outputs
)
return
new_grad
return
new_grad
def
append_regularization_ops
(
self
,
parameters_and_grads
,
regularization
=
None
...
...
python/paddle/optimizer/sgd.py
浏览文件 @
6c9fa665
...
...
@@ -15,11 +15,11 @@
import
warnings
import
paddle
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle
import
_C_ops
from
..fluid
import
core
,
framework
,
unique_name
from
..fluid.dygraph
import
no_grad
from
..fluid.framework
import
_in_legacy_dygraph
,
in_dygraph_mode
from
..fluid.framework
import
in_dygraph_mode
from
..fluid.layer_helper
import
LayerHelper
from
.optimizer
import
Optimizer
...
...
@@ -166,42 +166,32 @@ class SGD(Optimizer):
find_master
,
)
return
None
if
_in_legacy_dygraph
():
_legacy_C_ops
.
sgd
(
param_and_grad
[
0
],
lr
,
param_and_grad
[
1
],
master_weight
,
param_and_grad
[
0
],
master_weight
,
else
:
assert
isinstance
(
block
,
framework
.
Block
)
# create the optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
lr
,
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
]}
attrs
=
{
"multi_precision"
:
find_master
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
sgd_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
None
assert
isinstance
(
block
,
framework
.
Block
)
# create the optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
lr
,
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
]}
attrs
=
{
"multi_precision"
:
find_master
}
if
find_master
:
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
sgd_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
,
)
return
sgd_op
return
sgd_op
def
_update_param_group
(
self
,
parameters
):
parameters
=
parameters
.
get
(
'params'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录