optimizer.py 57.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import six
import logging
from collections import defaultdict

22
import paddle
M
MRXLT 已提交
23 24 25 26 27 28 29 30
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard

from ..fluid import framework
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
from ..fluid.clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
31
from ..fluid.framework import program_guard, Parameter
M
MRXLT 已提交
32 33 34 35 36 37 38 39 40 41
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
from ..fluid.layers import ops
from ..fluid.dygraph import base as imperative_base
from ..fluid.dygraph import no_grad
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
from ..fluid.wrapped_decorator import signature_safe_contextmanager
from .. import compat as cpt
42
from .lr import LRScheduler
43
import copy
W
wanghuancoder 已提交
44
from paddle import _C_ops
J
Jiabin Yang 已提交
45
from paddle.fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
M
MRXLT 已提交
46

47 48
__all__ = []

M
MRXLT 已提交
49

50 51 52 53 54 55 56 57 58 59 60
@framework.static_only
def append_backward_new(loss_list,
                        parameter_list=None,
                        no_grad_set=None,
                        callbacks=None,
                        checkpoints=None,
                        distop_context=None):
    from paddle.incubate.autograd.primx import orig2prim, Transform
    program = default_main_program()
    assert program.num_blocks == 1, "The append_backward_new interface is designed to process only one block."
    block = program.current_block()
61 62
    for el in loss_list:
        assert el.block == block, f'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


M
MRXLT 已提交
91
class Optimizer(object):
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
M
MRXLT 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
       Base class for optimizer. 
    
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            #Take the subclass sgd as an example
            #optimize parameters in linear_1 and linear2 in different options. 
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01)                   
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad
M
MRXLT 已提交
166 167 168 169 170 171
    def __init__(self,
                 learning_rate,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None):
172

173 174 175 176
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
177
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
178 179 180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
                    "an iterable of paddle Tensors, but got argument type is `{}`.".
                    format(type(parameters)))
182 183 184 185 186
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
                    " as list of dict")
187 188 189 190
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
191
        self._name = name
J
Jiabin Yang 已提交
192
        if framework._non_static_mode():
M
MRXLT 已提交
193 194 195 196 197
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
198 199 200 201 202 203 204 205 206 207 208
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
                        if hasattr(
                                param,
                                'regularizer') and param.regularizer is not None:
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                                % weight_decay.__str__())
                            break

209
        if not isinstance(learning_rate, (float, LRScheduler)):
210
            raise TypeError(
211
                "learning rate should be float or LRScheduler, got %s here" %
212
                type(learning_rate))
M
MRXLT 已提交
213 214 215 216 217 218 219 220 221 222 223 224
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
225

M
MRXLT 已提交
226
        self._dtype = None
L
Leo Chen 已提交
227 228
        # Infer the dtype form parameter
        if self._parameter_list:
229 230 231 232 233 234 235
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
                    assert 'params' in param_group, \
                        'params should be set in parameters if parameter groups are optimized in different options'
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
236

M
MRXLT 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
250 251 252 253 254 255 256 257 258 259 260
        self._default_dict = {
            'weight_decay': self.regularization,
            'grad_clip': self._grad_clip
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
261

262
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
263
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
264 265 266
        self._use_multi_tensor = None
        self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

267 268 269 270 271 272 273 274
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
275 276 277
    @framework.dygraph_only
    def state_dict(self):
        '''
278
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
279 280 281 282 283 284 285 286 287 288 289 290
        If the optimizer never be called(minimize function), the state_dict is empty.

        Args: 
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
        
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
291
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
292 293 294 295 296 297 298 299 300

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
301 302 303 304
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
305
        # global step if use lr decay
306
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
307 308 309 310 311 312
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
313
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
314 315 316 317 318 319 320 321 322 323 324

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python

                import paddle

325
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
326

327 328
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
329

330 331 332 333 334 335 336
                scheduler = paddle.optimizer.lr.NoamDecay(	
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
337

338
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
339 340 341
                adam.set_state_dict(opti_state_dict)

        '''
342
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
343
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
344

345
        if isinstance(self._learning_rate, LRScheduler):
346
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
347

348 349 350 351 352
        # NOTE: exclude learning rate scheduler's state from 
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
353 354 355 356
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer Tensor {} not found".format( var_tmp.name )
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
J
Jiangxinz 已提交
380
                                                 model_np.name, model_np.shape, load_para_np.shape)
M
MRXLT 已提交
381 382 383

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
J
Jiangxinz 已提交
384
                                                model_np.name, model_np.dtype, load_para_np.dtype)
M
MRXLT 已提交
385 386 387 388 389 390 391

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
392
        if isinstance(self._learning_rate, LRScheduler):
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=paddle.get_default_dtype()
                    if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
408

M
MRXLT 已提交
409
                self._learning_rate_map[framework.default_main_program(
410
                )] = lr_var
M
MRXLT 已提交
411

412 413 414 415 416 417
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
418 419 420
            if isinstance(lr, framework.Variable):
                return
            else:
421 422 423 424 425 426 427 428
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype=paddle.get_default_dtype()
                    if self._dtype is None else self._dtype,
                    persistable=True)
M
MRXLT 已提交
429 430 431 432 433 434

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
435
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
436 437 438
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
439
            value (float): the value of learning rate
M
MRXLT 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
466
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
467
            raise TypeError(
468
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
M
MRXLT 已提交
469
                % (type(value)))
470
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
471
            raise RuntimeError(
472
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
473
            )
474 475 476
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
J
Jiabin Yang 已提交
477
            if framework._non_static_mode():
478 479 480 481 482 483 484 485 486 487 488 489 490 491
                _C_ops.fill_constant(current_lr, 'value',
                                     float(value), 'dtype', current_lr.dtype,
                                     'shape', list(current_lr.shape))
            else:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
M
MRXLT 已提交
492 493 494

    def get_lr(self):
        """
495 496 497
        Get current learning rate of optimizer. 
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
498

M
MRXLT 已提交
499
        Returns:
500
            float: The current learning rate of optimizer.
M
MRXLT 已提交
501 502 503 504

        Examples:
            .. code-block:: python

505
                # train on default dynamic graph mode
M
MRXLT 已提交
506
                import paddle
507 508 509 510 511 512 513 514 515 516 517
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
518

519 520 521 522 523 524 525 526
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
527
                    adam.step()
528
                    scheduler.step()
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
548 549 550 551 552

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
553
            return self._learning_rate()
M
MRXLT 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
574 575 576 577
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
578
            else:
579 580 581 582 583 584 585 586 587
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
                            is_with_opt=True), framework.name_scope(
                                'scale_with_param_lr'):
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None,
                         type=None,
                         device=None):
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
J
Jiabin Yang 已提交
632
            if framework._non_static_mode():
M
MRXLT 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
                return self._accumulators[name][param.name]
            raise Exception("Accumulator {} already exists for parameter {}".
                            format(name, param.name))
        if shape == None:
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
648
            type=core.VarDesc.VarType.LOD_TENSOR
J
Jiabin Yang 已提交
649 650
            if framework._in_eager_without_dygraph_check() else
            (param.type if type is None else type),
M
MRXLT 已提交
651 652 653 654 655 656 657 658
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

J
Jiabin Yang 已提交
659
        if framework._non_static_mode():
M
MRXLT 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
688
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

    def _create_optimization_pass(self, parameters_and_grads):
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
741

M
MRXLT 已提交
742 743
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
744 745 746 747
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
                'Momentum', 'Adam'
        ]:
748 749 750 751 752 753 754 755 756 757 758 759 760
            if len(self._param_dict['FP32_LODTensor']) == 0 and len(
                    self._param_dict['FP16_LODTensor']) == 0:
                if isinstance(parameters_and_grads, list):
                    self._multi_tensor_init(target_block, [
                        p[0] for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ])
                else:
                    self._update_param_group(parameters_and_grads)
                    self._multi_tensor_init(target_block, [
                        p[0] for p in parameters_and_grads['params']
                        if not p[0].stop_gradient
                    ])
J
Jiabin Yang 已提交
761
            if framework._non_static_mode():
762 763 764 765 766 767 768 769
                self._append_optimize_multi_tensor_op(target_block,
                                                      parameters_and_grads)
            else:
                self._update_param_device_map(parameters_and_grads,
                                              target_block)
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
770
                for param_and_grad in parameters_and_grads:
771 772 773 774 775 776 777 778 779 780 781
                    if not param_and_grad[0].stop_gradient and param_and_grad[
                            1] is not None:
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
                        param_grad_list), name_scope("optimizer"):
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
                            target_block, parameters_and_grads)
        else:
J
Jiabin Yang 已提交
782
            if not framework._non_static_mode():
783 784 785 786 787 788
                params_grads_device_map = parameters_and_grads[
                    'params'] if isinstance(parameters_and_grads,
                                            dict) else parameters_and_grads
                self._update_param_device_map(params_grads_device_map,
                                              target_block)

789 790 791 792
            if isinstance(parameters_and_grads, list):
                self._create_accumulators(target_block, [
                    p[0] for p in parameters_and_grads if not p[0].stop_gradient
                ])
793
            else:
794 795 796 797 798 799 800
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
                    p[0] for p in params_acc_dict['params']
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
801
            if framework._non_static_mode():
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                if isinstance(parameters_and_grads, list):
                    for param_and_grad in parameters_and_grads:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            self._append_optimize_op(target_block,
                                                     param_and_grad)
                else:
                    for param_and_grad in parameters_and_grads['params']:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            param_grad_dict = dict()
                            param_grad_dict['params'] = param_and_grad
                            param_grad_dict.update({
                                k: v
                                for k, v in parameters_and_grads.items()
                                if k != 'params'
                            })
                            self._append_optimize_op(target_block,
                                                     param_grad_dict)
            else:
                for param_and_grad in parameters_and_grads:
825 826
                    if param_and_grad[1] is None:
                        continue
827 828 829 830 831 832 833 834
                    with param_and_grad[0].block.program._optimized_guard(
                            param_and_grad), name_scope("optimizer"):
                        if param_and_grad[0].stop_gradient is False:
                            device = self._get_device_for_param(param_and_grad[
                                0].name)
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
                                    target_block, param_and_grad)
M
MRXLT 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

    def backward(self,
                 loss,
                 startup_program=None,
                 parameters=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
880
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
881 882 883 884 885 886 887 888 889
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
890
        if framework._non_static_mode():
M
MRXLT 已提交
891 892 893 894
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
895 896 897 898
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
899
        if framework._non_static_mode():
900 901 902
            parameter_list = parameters if parameters \
                else self._parameter_list

M
MRXLT 已提交
903
            params_grads = []
904
            for param in parameter_list:
905
                if param.stop_gradient:
M
MRXLT 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
                    continue
                if param._grad_ivar() is not None:
                    # create gradient tensor
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call paddle.mean to process the current loss.".format(
                    loss.shape)
            parameter_list = parameters if parameters \
                else self._parameter_list
            with program_guard(program, startup_program):
924 925 926 927 928 929 930
                from paddle.incubate.autograd.utils import prim_enabled
                if prim_enabled():
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks)
                else:
                    params_grads = append_backward(loss, parameter_list,
                                                   act_no_grad_set, callbacks)
M
MRXLT 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np

                inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                linear = paddle.nn.Linear(10, 10)
                inp = paddle.to_tensor(inp)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
975 976
        params_grads = self.append_regularization_ops(params_grads,
                                                      self.regularization)
M
MRXLT 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

    def _apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
993
        if framework._non_static_mode():
M
MRXLT 已提交
994 995
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
996 997 998
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
999
                    params_grads = self.append_regularization_ops(
1000 1001 1002 1003 1004 1005 1006
                        params_grads, self.regularization)
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
                        params_grads['params'] = grad_clip(params_grads[
                            'params'])

1007
                    params_grads['params'] = self.append_regularization_ops(
1008
                        params_grads['params'], self.regularization)
M
MRXLT 已提交
1009 1010 1011 1012 1013 1014 1015
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
    
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
        if grad is None or ((not hasattr(param, 'regularizer') or
                             (hasattr(param, 'regularizer') and
                              param.regularizer is None)) and
                            regularization is None):
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1036 1037 1038
        if framework.in_dygraph_mode():
            return _C_ops.final_state_add_n([grad, regularization_term])
        elif framework._in_legacy_dygraph():
W
wanghuancoder 已提交
1039
            return _C_ops.sum([grad, regularization_term])
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
                type=core.VarDesc.VarType.LOD_TENSOR)

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1056
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

        return new_grad

    def append_regularization_ops(self,
                                  parameters_and_grads,
                                  regularization=None):
        r"""Create and add backward regularization Operators
    
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
    
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
    
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
    
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1084
        if framework._non_static_mode():
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            for param, grad in parameters_and_grads:
                new_grad = self._create_regularization_of_grad(param, grad,
                                                               regularization)
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
                    if not repeate_regularizer and param.regularizer is not None and regularization is not None:
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1105 1106 1107
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1108 1109 1110
        param_no_trainable = set([
            param.name for param in parameters if param.stop_gradient is True
        ])
M
MRXLT 已提交
1111 1112 1113 1114 1115 1116
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1117
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1118 1119
        """
        Clear the gradients of all optimized parameters for model.
1120 1121

        If not, new gradient will accumulat on previous gradient.
1122 1123 1124 1125 1126

        There are two method to clear grad: set_to_zero or delete grad.
        
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
M
MRXLT 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
1136

M
MRXLT 已提交
1137 1138
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1139
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1149
        param_list = []
1150 1151 1152 1153
        if self._parameter_list is None or not isinstance(
                self._parameter_list[0], dict):
            for p in self._parameter_list:
                if not p.stop_gradient:
1154
                    param_list.append(p)
1155 1156 1157 1158
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1159
                        param_list.append(p)
1160

J
Jiabin Yang 已提交
1161
        if _in_eager_without_dygraph_check():
1162
            for p in param_list:
1163
                p.clear_gradient(set_to_zero)
1164 1165
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1166

1167
    @imperative_base.no_grad
M
MRXLT 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameters=None,
                 no_grad_set=None):
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
M
MRXLT 已提交
1191
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
M
MRXLT 已提交
1192 1193 1194 1195 1196
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
M
MRXLT 已提交
1197
 
M
MRXLT 已提交
1198
                import paddle
M
MRXLT 已提交
1199
                linear = paddle.nn.Linear(10, 10)
1200 1201
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1202 1203 1204 1205 1206 1207 1208 1209
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1210
                loss.backward()
M
MRXLT 已提交
1211 1212 1213
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1214 1215 1216 1217 1218
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

        parameter_list = parameters if parameters \
            else self._parameter_list
1219

M
MRXLT 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads

L
Leo Chen 已提交
1231
    @imperative_base.no_grad
M
MRXLT 已提交
1232 1233 1234
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1235
        Execute the optimizer and update parameters once.
M
MRXLT 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
1245

M
MRXLT 已提交
1246 1247
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1248
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1249 1250 1251 1252 1253 1254 1255 1256
                # This can be any optimizer supported by dygraph.
                adam = paddle.optimizer.Adam(learning_rate = 0.01, 
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

            self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads)

        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
                    {k: v
                     for k, v in param_group.items() if k != 'params'})
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads)

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
                "but received set, please use list instead.")
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
                "some parameters appear in more than one parameter group")

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1324 1325
            param.optimize_attr['learning_rate'] = param_group.get(
                'learning_rate', 1.)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

    @framework.dygraph_only
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
    def _append_optimize_multi_tensor_op(self, target_block,
                                         parameters_and_grads):
        """ 
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass