optimizer.py 63.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26
    _current_expected_place,
27 28
    default_main_program,
    device_guard,
29
    in_dygraph_mode,
30 31
    name_scope,
)
32
from paddle.regularizer import L2Decay
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
J
Jiabin Yang 已提交
197
        if framework._non_static_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227 228 229 230 231
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
232

M
MRXLT 已提交
233
        self._dtype = None
L
Leo Chen 已提交
234 235
        # Infer the dtype form parameter
        if self._parameter_list:
236 237
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
238 239 240
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
241 242 243
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
244

M
MRXLT 已提交
245 246
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
247
        self._learning_rate_map = {}
M
MRXLT 已提交
248 249 250 251
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
252
        self._accumulators = defaultdict(lambda: {})
M
MRXLT 已提交
253 254 255
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
256
        self._param_device_map = {}
M
MRXLT 已提交
257
        self.clear_gradients = self.clear_grad
258 259
        self._default_dict = {
            'weight_decay': self.regularization,
260
            'grad_clip': self._grad_clip,
261 262 263 264 265 266 267 268
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
269

270
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
271
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
272 273
        self._use_multi_tensor = None

274
        self._param_dict = self._create_multi_tensor_dict()
275
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
276
        self._already_create_accumulater = set()
277 278 279 280

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

281 282 283 284 285 286 287
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

288 289 290
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
291 292 293
    @framework.dygraph_only
    def state_dict(self):
        '''
294
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
295 296
        If the optimizer never be called(minimize function), the state_dict is empty.

297
        Args:
M
MRXLT 已提交
298 299 300 301
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
302

M
MRXLT 已提交
303 304 305 306
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
307
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
308 309 310 311 312 313 314 315 316

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
317 318 319 320
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
321
        # global step if use lr decay
322
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
323 324 325 326 327 328
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
329
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
330

331
        Args:
M
MRXLT 已提交
332 333 334
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
335

M
MRXLT 已提交
336 337 338 339 340
        Examples:
            .. code-block:: python

                import paddle

341
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
342

343 344
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
345

346
                scheduler = paddle.optimizer.lr.NoamDecay(
347 348 349 350 351 352
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
353

354
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
355 356 357
                adam.set_state_dict(opti_state_dict)

        '''
358
        if isinstance(self._learning_rate, LRScheduler):
359
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
360

361
        # NOTE: exclude learning rate scheduler's state from
362 363 364 365
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
366 367 368 369
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
370 371 372
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
373 374
                assert (
                    var_tmp.name in state_dict
375
                ), f"optimizer Tensor {var_tmp.name} not found"
M
MRXLT 已提交
376 377 378 379 380 381 382
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
383
                    load_para_np = np.array(load_para)
W
wanghuancoder 已提交
384
                elif isinstance(load_para, core.eager.Tensor):
385
                    load_para_np = np.array(load_para)
M
MRXLT 已提交
386 387 388
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
389 390 391 392 393 394 395 396 397 398 399
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
400

401 402 403 404 405
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
406 407 408 409 410 411 412

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
413 414 415 416 417 418
        def do_create():
            # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
            _lr_dtype = (
                paddle.get_default_dtype()
                if self._dtype is None
                else self._dtype
419
            )
420 421 422 423 424 425 426 427 428 429 430
            _lr_dtype = (
                paddle.float32
                if (
                    (
                        paddle.get_default_dtype() != "float16"
                        and _lr_dtype == paddle.float16
                    )
                    or (
                        paddle.get_default_dtype() != "bfloat16"
                        and _lr_dtype == paddle.bfloat16
                    )
431
                )
432
                else _lr_dtype
433
            )
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
            if isinstance(self._learning_rate, LRScheduler):
                lr_var = self._global_learning_rate()
                # only create global lr_var once
                if not isinstance(lr_var, framework.Variable):
                    lr_name = unique_name.generate('learning_rate')
                    self._learning_rate._var_name = lr_name
                    lr_var = self.helper.create_global_variable(
                        name=lr_name,
                        shape=[],
                        persistable=True,
                        stop_gradient=True,
                        dtype=_lr_dtype,
                    )
                    main_prog = framework.default_main_program()
                    main_prog.lr_scheduler = self._learning_rate
                    main_prog.lr_var = lr_var

                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = lr_var

                lr_value = float(self._learning_rate())
                self.helper.set_variable_initializer(
                    lr_var,
                    initializer=paddle.nn.initializer.Constant(value=lr_value),
459
                )
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            elif isinstance(self._learning_rate, float):
                # only create global lr_var once
                lr = self._global_learning_rate()
                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = paddle.static.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[],
                        value=float(self._learning_rate),
                        dtype=_lr_dtype,
                        persistable=True,
                    )

        with paddle.fluid.framework.dygraph_guard_if_declarative():
            do_create()
M
MRXLT 已提交
478 479 480 481 482

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
483

484
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
485 486 487
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
488
            value (float): the value of learning rate
M
MRXLT 已提交
489 490 491

        Returns:
            None
492

M
MRXLT 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
515
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
516
            raise TypeError(
517
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
518 519
                % (type(value))
            )
520
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
521
            raise RuntimeError(
522
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
523
            )
524 525 526
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
527 528
            if in_dygraph_mode():
                place = _current_expected_place()
529 530 531 532 533 534 535
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
536 537
            else:
                global_block = framework.default_main_program().global_block()
538 539 540 541 542 543 544 545 546 547
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
548 549 550

    def get_lr(self):
        """
551
        Get current learning rate of optimizer.
552 553
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
554

M
MRXLT 已提交
555
        Returns:
556
            float: The current learning rate of optimizer.
M
MRXLT 已提交
557 558 559 560

        Examples:
            .. code-block:: python

561
                # train on default dynamic graph mode
M
MRXLT 已提交
562
                import paddle
563 564 565 566 567 568 569 570 571 572 573
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
574

575 576 577 578 579 580 581 582
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
583
                    adam.step()
584
                    scheduler.step()
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
604 605 606 607 608

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
609
            return self._learning_rate()
M
MRXLT 已提交
610 611 612 613 614 615 616 617 618 619 620

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
621
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
622 623 624 625 626 627 628
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
629 630 631 632
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
633
            else:
634 635 636 637
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
638 639
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
640 641 642
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

M
MRXLT 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

694 695 696 697 698 699 700 701 702 703
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
704 705 706 707 708 709 710 711 712 713 714
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
715 716 717 718
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
719
            if framework._non_static_mode():
M
MRXLT 已提交
720
                return self._accumulators[name][param.name]
721 722
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
723 724 725
                    name, param.name
                )
            )
726
        if shape is None:
M
MRXLT 已提交
727 728 729 730 731 732 733 734 735 736 737
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
738
            type=core.VarDesc.VarType.LOD_TENSOR,
M
MRXLT 已提交
739
            shape=shape,
740 741
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
742 743
        if device is None:
            device = self._get_device_for_param(param.name)
744

W
wanghuancoder 已提交
745 746 747 748
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
749 750 751 752 753 754 755
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
756
            )
757 758 759
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
760 761 762 763
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
764
                )
M
MRXLT 已提交
765

J
Jiabin Yang 已提交
766
        if framework._non_static_mode():
M
MRXLT 已提交
767
            if len(self._accumulators_holder) > 0:
768 769 770 771 772
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
773
                var.set_value(self._accumulators_holder.pop(var_name))
M
MRXLT 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
790 791 792 793
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
794 795
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
796 797 798
                    name, param.name
                )
            )
M
MRXLT 已提交
799 800
        return self._accumulators[name][param.name]

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
829 830
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
831
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
832 833
                param_name = param_and_grad[0].name
                ops = target_block.ops
834 835
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
836 837 838 839 840
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
841 842
                            device_attr_name
                        )
M
MRXLT 已提交
843 844 845 846 847 848 849 850
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

851 852 853
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
881 882 883
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
884
            target_block = framework.default_main_program().blocks[
885 886
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
887 888 889

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
890

M
MRXLT 已提交
891 892
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
893 894
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
895 896
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
897
        ]:
898
            if (
899 900 901
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
902
            ):
903
                if isinstance(parameters_and_grads, list):
904
                    assert param_group_idx == 0
905 906 907 908 909 910 911
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
912
                        param_group_idx,
913
                    )
914 915
                else:
                    self._update_param_group(parameters_and_grads)
916 917 918 919 920 921 922
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
923
                        param_group_idx,
924
                    )
J
Jiabin Yang 已提交
925
            if framework._non_static_mode():
926
                self._append_optimize_multi_tensor_op(
927 928 929
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
930
                )
931
            else:
932 933 934
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
935 936 937
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
938
                for param_and_grad in parameters_and_grads:
939 940 941 942
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
943 944 945
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
946 947
                    param_grad_list
                ), name_scope("optimizer"):
948 949 950
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
951 952 953
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
954
                        )
955
        else:
J
Jiabin Yang 已提交
956
            if not framework._non_static_mode():
957 958 959 960 961 962 963 964
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
965

966
            if isinstance(parameters_and_grads, list):
967 968 969 970 971 972 973 974 975
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
976
            else:
977 978
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
979 980
                    p[0]
                    for p in params_acc_dict['params']
981 982
                    if not p[0].stop_gradient
                ]
983 984
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(target_block, params_acc_dict)
985

J
Jiabin Yang 已提交
986
            if framework._non_static_mode():
W
wanghuancoder 已提交
987 988 989 990
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
991
                else:
W
wanghuancoder 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
1007
                                param_grad_dict = {}
W
wanghuancoder 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1019 1020
            else:
                for param_and_grad in parameters_and_grads:
1021 1022
                    if param_and_grad[1] is None:
                        continue
1023
                    with param_and_grad[0].block.program._optimized_guard(
1024 1025
                        param_and_grad
                    ), name_scope("optimizer"):
1026
                        if param_and_grad[0].stop_gradient is False:
1027
                            device = self._get_device_for_param(
1028 1029
                                param_and_grad[0].name
                            )
1030 1031
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1032 1033
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1045 1046 1047 1048 1049 1050 1051 1052
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1078 1079
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1080
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1081
                # This can be any optimizer supported by dygraph.
1082
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1083
                                            parameters = linear.parameters())
1084
                out = linear(x)
M
MRXLT 已提交
1085 1086 1087 1088 1089
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1090
        if framework._non_static_mode():
M
MRXLT 已提交
1091 1092 1093 1094
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1095 1096 1097 1098
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1099
        if framework.in_dygraph_mode():
1100
            parameter_list = parameters if parameters else self._parameter_list
1101

1102 1103 1104 1105 1106 1107 1108
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1109 1110
        else:
            if callbacks is None:
1111
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1112
            else:
1113
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1114
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1115 1116
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
M
MRXLT 已提交
1117
                "Maybe that you should call paddle.mean to process the current loss.".format(
1118 1119 1120 1121
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1122
            with program_guard(program, startup_program):
1123
                from paddle.incubate.autograd.utils import prim_enabled
1124

1125
                if prim_enabled():
1126 1127 1128
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1129
                else:
1130 1131 1132
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1154
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1172
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1173 1174

        # Add regularization if any
1175 1176 1177
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1178 1179 1180 1181

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1182 1183 1184
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1196
        if framework._non_static_mode():
1197 1198 1199 1200
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1201 1202 1203
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1204
                    params_grads = self.append_regularization_ops(
1205 1206
                        params_grads, self.regularization
                    )
1207 1208 1209
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1210
                        params_grads['params'] = grad_clip(
1211 1212
                            params_grads['params']
                        )
1213

1214
                    params_grads['params'] = self.append_regularization_ops(
1215 1216
                        params_grads['params'], self.regularization
                    )
1217 1218 1219
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1220
        else:
1221
            assert param_group_idx == 0
M
MRXLT 已提交
1222 1223 1224 1225 1226
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1227
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1228
        """Create and add backward regularization Operators
1229

1230 1231 1232
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1233
        if grad is None or (
1234 1235 1236 1237 1238 1239
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1250
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1251
            return _C_ops.add_n([grad, regularization_term])
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1266

1267 1268 1269
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1270

1271
            return new_grad
1272

1273 1274 1275
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1276
        r"""Create and add backward regularization Operators
1277

1278 1279 1280 1281
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1282

1283 1284 1285 1286 1287
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1288

1289 1290 1291
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1292

1293 1294 1295 1296
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1297
        if framework._non_static_mode():
1298
            for param, grad in parameters_and_grads:
1299
                new_grad = self._create_regularization_of_grad(
1300 1301
                    param, grad, regularization
                )
1302 1303 1304 1305 1306
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1307 1308 1309 1310 1311
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1312 1313 1314 1315
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1316 1317
                            % regularization.__str__()
                        )
1318 1319
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1320 1321
                            param, grad, regularization
                        )
1322 1323 1324
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1325 1326 1327
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1328 1329 1330
        param_no_trainable = {
            param.name for param in parameters if param.stop_gradient is True
        }
M
MRXLT 已提交
1331 1332 1333 1334 1335
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1336
    @framework.non_static_only
1337
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1338 1339
        """
        Clear the gradients of all optimized parameters for model.
1340 1341

        If not, new gradient will accumulat on previous gradient.
1342 1343

        There are two method to clear grad: set_to_zero or delete grad.
1344

1345 1346
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1347

M
MRXLT 已提交
1348 1349
        Returns:
            None
1350

M
MRXLT 已提交
1351 1352 1353 1354
        Examples:
            .. code-block:: python

                import paddle
1355

1356
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1357
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1358
                # This can be any optimizer supported by dygraph.
1359
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1360 1361 1362 1363 1364 1365 1366
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1367
        param_list = []
1368
        if self._parameter_list is None or not isinstance(
1369 1370
            self._parameter_list[0], dict
        ):
1371 1372
            for p in self._parameter_list:
                if not p.stop_gradient:
1373
                    param_list.append(p)
1374 1375 1376 1377
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1378
                        param_list.append(p)
1379

1380 1381
        for p in param_list:
            p.clear_gradient(set_to_zero)
M
MRXLT 已提交
1382

1383
    @imperative_base.no_grad()
1384 1385 1386
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1405 1406
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1407 1408 1409 1410
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1411

M
MRXLT 已提交
1412
                import paddle
M
MRXLT 已提交
1413
                linear = paddle.nn.Linear(10, 10)
1414 1415
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1416 1417 1418 1419 1420 1421 1422 1423
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1424
                loss.backward()
M
MRXLT 已提交
1425 1426 1427
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1428 1429 1430
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1431
        parameter_list = parameters if parameters else self._parameter_list
1432

1433 1434 1435 1436 1437 1438
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1439

1440 1441 1442
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1443 1444 1445

        return optimize_ops, params_grads

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    def _declarative_step(self):
        """
        In declarative mode, we forward `call step` to `call apply_gradients`
        """
        params = (
            paddle.static.default_main_program().global_block().all_parameters()
        )
        assert not isinstance(
            self._parameter_list[0], dict
        ), "Only list of parameters is supported while using optimizer in @paddle.jit.static."
        selected_params = {param.name for param in self._parameter_list}
        parameters = [param for param in params if param.trainable]
        parameters = list(
            filter(
                lambda x: x.name in selected_params and hasattr(x, "grad"),
                parameters,
            )
        )
        params_grads = [(param, param.grad) for param in parameters]
        optimize_ops = self.apply_gradients(params_grads)
        return

1468
    @imperative_base.no_grad()
1469
    @framework.non_static_only
M
MRXLT 已提交
1470 1471
    def step(self):
        """
M
MRXLT 已提交
1472
        Execute the optimizer and update parameters once.
1473

M
MRXLT 已提交
1474 1475 1476 1477 1478 1479 1480
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1481

1482
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1483
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1484
                # This can be any optimizer supported by dygraph.
1485
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1486
                                        parameters = linear.parameters())
M
MRXLT 已提交
1487 1488 1489 1490 1491
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1492 1493 1494
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1505
            self._apply_optimize(
1506 1507 1508 1509
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1510
            )
1511 1512 1513

        else:
            # optimize parameters in groups
1514
            for idx, param_group in enumerate(self._param_groups):
1515
                params_grads = defaultdict(lambda: [])
1516 1517 1518 1519 1520 1521 1522
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1523 1524 1525
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1526 1527 1528 1529
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1530
                )
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1546 1547
                "but received set, please use list instead."
            )
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1561 1562
                "some parameters appear in more than one parameter group"
            )
1563 1564 1565 1566 1567 1568 1569 1570

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1571
            param.optimize_attr['learning_rate'] = param_group.get(
1572 1573
                'learning_rate', 1.0
            )
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1585 1586

    @framework.dygraph_only
1587
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1599
    def _append_optimize_multi_tensor_op(
1600
        self, target_block, parameters_and_grads, param_group_idx
1601
    ):
1602
        """
1603 1604 1605
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )