optimizer.py 58.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import logging
from collections import defaultdict

19
import paddle
20 21 22 23 24 25
from paddle.fluid.framework import (
    Variable,
    default_main_program,
    device_guard,
    name_scope,
)
M
MRXLT 已提交
26 27 28 29

from ..fluid import framework
from ..fluid import layers
from ..fluid import unique_name
30
from ..fluid.backward import _get_no_grad_set_name, append_backward
31 32 33 34 35
from ..fluid.clip import (
    GradientClipBase,
    append_gradient_clip_ops,
    error_clip_callback,
)
36
from ..fluid.framework import program_guard, Parameter
M
MRXLT 已提交
37 38 39 40
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
from ..fluid.dygraph import base as imperative_base
from paddle.fluid import core
41
from .lr import LRScheduler
42
from paddle import _C_ops, _legacy_C_ops
43 44 45 46 47 48
from paddle.fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _current_expected_place,
    in_dygraph_mode,
)
M
MRXLT 已提交
49

50 51
__all__ = []

M
MRXLT 已提交
52

53
@framework.static_only
54 55 56 57 58 59 60 61
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
62
    from paddle.incubate.autograd.primx import orig2prim, Transform
63

64
    program = default_main_program()
65 66 67
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
68
    block = program.current_block()
69
    for el in loss_list:
70 71 72
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


M
MRXLT 已提交
101
class Optimizer(object):
102
    r"""Optimizer Base class.
M
MRXLT 已提交
103 104 105 106 107 108

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
109 110
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
111
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
112 113 114 115
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
M
MRXLT 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
133 134
       Base class for optimizer.

M
MRXLT 已提交
135 136 137 138 139 140
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
141
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
142 143 144 145
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
146
            loss.backward()
M
MRXLT 已提交
147 148 149
            adam.step()
            adam.clear_grad()

150
            #Take the subclass sgd as an example
151
            #optimize parameters in linear_1 and linear2 in different options.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
168
                weight_decay=0.01)
R
Roc 已提交
169
            loss.backward()
170 171 172
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
173 174
    """

175
    @imperative_base.no_grad
176 177 178 179 180 181 182 183
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
184

185 186 187 188
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
189
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
190 191
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
192 193 194 195
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
196 197 198 199
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
200 201
                    " as list of dict"
                )
202 203 204 205
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
206
        self._name = name
J
Jiabin Yang 已提交
207
        if framework._non_static_mode():
M
MRXLT 已提交
208 209 210 211 212
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
213 214
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
215 216 217 218
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
219 220 221
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
222 223
                                % weight_decay.__str__()
                            )
224 225
                            break

226
        if not isinstance(learning_rate, (float, LRScheduler)):
227
            raise TypeError(
228 229 230
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
231 232 233 234 235 236 237
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
238

M
MRXLT 已提交
239 240 241 242 243
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
244

M
MRXLT 已提交
245
        self._dtype = None
L
Leo Chen 已提交
246 247
        # Infer the dtype form parameter
        if self._parameter_list:
248 249
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
250 251 252
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
253 254 255
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
256

M
MRXLT 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
270 271
        self._default_dict = {
            'weight_decay': self.regularization,
272
            'grad_clip': self._grad_clip,
273 274 275 276 277 278 279 280
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
281

282
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
283
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
284 285 286
        self._use_multi_tensor = None
        self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

287 288 289 290 291 292 293 294
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
295 296 297
    @framework.dygraph_only
    def state_dict(self):
        '''
298
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
299 300
        If the optimizer never be called(minimize function), the state_dict is empty.

301
        Args:
M
MRXLT 已提交
302 303 304 305
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
306

M
MRXLT 已提交
307 308 309 310
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
311
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
312 313 314 315 316 317 318 319 320

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
321 322 323 324
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
325
        # global step if use lr decay
326
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
327 328 329 330 331 332
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
333
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
334

335
        Args:
M
MRXLT 已提交
336 337 338
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
339

M
MRXLT 已提交
340 341 342 343 344
        Examples:
            .. code-block:: python

                import paddle

345
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
346

347 348
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
349

350
                scheduler = paddle.optimizer.lr.NoamDecay(
351 352 353 354 355 356
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
357

358
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
359 360 361
                adam.set_state_dict(opti_state_dict)

        '''
362
        if isinstance(self._learning_rate, LRScheduler):
363
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
364

365
        # NOTE: exclude learning rate scheduler's state from
366 367 368 369
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
370 371 372 373
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
374 375 376
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
377 378 379
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
393 394 395 396 397 398 399 400 401 402 403
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
404

405 406 407 408 409
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
410 411 412 413 414 415 416

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
417
        # lr var can't be float16, for pure fp16 training, should extra handle the dtype for lr
418 419 420 421 422 423 424 425 426 427 428
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
                paddle.get_default_dtype() != "float16"
                and _lr_dtype == paddle.float16
            )
            else _lr_dtype
        )
429
        if isinstance(self._learning_rate, LRScheduler):
430 431 432 433 434
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
435 436 437 438 439 440 441
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
442 443 444
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
445

446
                self._learning_rate_map[
447 448
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
449

450 451
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
452 453
                lr_var, initializer=Constant(value=lr_value)
            )
454 455 456
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
457 458 459
            if isinstance(lr, framework.Variable):
                return
            else:
460 461 462
                self._learning_rate_map[
                    framework.default_main_program()
                ] = layers.create_global_var(
463 464 465
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
466
                    dtype=_lr_dtype,
467 468
                    persistable=True,
                )
M
MRXLT 已提交
469 470 471 472 473

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
474

475
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
476 477 478
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
479
            value (float): the value of learning rate
M
MRXLT 已提交
480 481 482

        Returns:
            None
483

M
MRXLT 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
506
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
507
            raise TypeError(
508
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
509 510
                % (type(value))
            )
511
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
512
            raise RuntimeError(
513
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
514
            )
515 516 517
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
518 519
            if in_dygraph_mode():
                place = _current_expected_place()
520 521 522 523 524 525 526
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
527 528

            elif _in_legacy_dygraph():
529 530 531 532 533 534 535 536 537
                _legacy_C_ops.fill_constant(
                    current_lr,
                    'value',
                    float(value),
                    'dtype',
                    current_lr.dtype,
                    'shape',
                    list(current_lr.shape),
                )
538 539
            else:
                global_block = framework.default_main_program().global_block()
540 541 542 543 544 545 546 547 548 549
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
550 551 552

    def get_lr(self):
        """
553
        Get current learning rate of optimizer.
554 555
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
556

M
MRXLT 已提交
557
        Returns:
558
            float: The current learning rate of optimizer.
M
MRXLT 已提交
559 560 561 562

        Examples:
            .. code-block:: python

563
                # train on default dynamic graph mode
M
MRXLT 已提交
564
                import paddle
565 566 567 568 569 570 571 572 573 574 575
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
576

577 578 579 580 581 582 583 584
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
585
                    adam.step()
586
                    scheduler.step()
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
606 607 608 609 610

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
611
            return self._learning_rate()
M
MRXLT 已提交
612 613 614 615 616 617 618 619 620 621 622

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
624 625 626 627 628 629 630
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
631 632 633 634
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
635
            else:
636 637 638 639
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
640 641
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
642 643 644
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

668 669 670 671 672 673 674 675 676 677
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
678 679 680 681 682 683 684 685 686 687 688
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
689 690 691 692
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
693
            if framework._non_static_mode():
M
MRXLT 已提交
694
                return self._accumulators[name][param.name]
695 696
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
697 698 699
                    name, param.name
                )
            )
M
MRXLT 已提交
700 701 702 703 704 705 706 707 708 709 710 711
        if shape == None:
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
712
            type=core.VarDesc.VarType.LOD_TENSOR
713 714
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
715
            shape=shape,
716 717
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
718 719 720 721
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
722 723
                var, initializer=Constant(value=float(fill_value))
            )
M
MRXLT 已提交
724

J
Jiabin Yang 已提交
725
        if framework._non_static_mode():
M
MRXLT 已提交
726
            if len(self._accumulators_holder) > 0:
727 728 729 730 731
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
749 750 751 752
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
753 754
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
755 756 757
                    name, param.name
                )
            )
M
MRXLT 已提交
758 759 760 761
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
762
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
763 764
                param_name = param_and_grad[0].name
                ops = target_block.ops
765 766
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
767 768 769 770 771
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
772 773
                            device_attr_name
                        )
M
MRXLT 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

    def _create_optimization_pass(self, parameters_and_grads):
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
810 811 812
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
813
            target_block = framework.default_main_program().blocks[
814 815
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
816 817 818

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
819

M
MRXLT 已提交
820 821
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
822 823
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
824 825
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
826
        ]:
827 828 829 830
            if (
                len(self._param_dict['FP32_LODTensor']) == 0
                and len(self._param_dict['FP16_LODTensor']) == 0
            ):
831
                if isinstance(parameters_and_grads, list):
832 833 834 835 836 837 838 839
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
840 841
                else:
                    self._update_param_group(parameters_and_grads)
842 843 844 845 846 847 848 849
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
                    )
J
Jiabin Yang 已提交
850
            if framework._non_static_mode():
851 852 853
                self._append_optimize_multi_tensor_op(
                    target_block, parameters_and_grads
                )
854
            else:
855 856 857
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
858 859 860
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
861
                for param_and_grad in parameters_and_grads:
862 863 864 865
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
866 867 868
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
869 870
                    param_grad_list
                ), name_scope("optimizer"):
871 872 873
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
874 875
                            target_block, parameters_and_grads
                        )
876
        else:
J
Jiabin Yang 已提交
877
            if not framework._non_static_mode():
878 879 880 881 882 883 884 885
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
886

887
            if isinstance(parameters_and_grads, list):
888 889 890 891 892 893 894 895
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
896
            else:
897 898
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
899 900
                    p[0]
                    for p in params_acc_dict['params']
901 902 903 904
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
905
            if framework._non_static_mode():
906 907 908 909 910
                if isinstance(parameters_and_grads, list):
                    for param_and_grad in parameters_and_grads:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
911 912 913
                            self._append_optimize_op(
                                target_block, param_and_grad
                            )
914 915 916 917 918 919 920
                else:
                    for param_and_grad in parameters_and_grads['params']:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            param_grad_dict = dict()
                            param_grad_dict['params'] = param_and_grad
921 922 923 924 925 926 927 928 929 930
                            param_grad_dict.update(
                                {
                                    k: v
                                    for k, v in parameters_and_grads.items()
                                    if k != 'params'
                                }
                            )
                            self._append_optimize_op(
                                target_block, param_grad_dict
                            )
931 932
            else:
                for param_and_grad in parameters_and_grads:
933 934
                    if param_and_grad[1] is None:
                        continue
935
                    with param_and_grad[0].block.program._optimized_guard(
936 937
                        param_and_grad
                    ), name_scope("optimizer"):
938
                        if param_and_grad[0].stop_gradient is False:
939
                            device = self._get_device_for_param(
940 941
                                param_and_grad[0].name
                            )
942 943
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
944 945
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
946 947 948 949 950 951 952 953 954 955 956

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

957 958 959 960 961 962 963 964
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
993
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
994
                # This can be any optimizer supported by dygraph.
995
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
996 997 998 999 1000 1001 1002
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1003
        if framework._non_static_mode():
M
MRXLT 已提交
1004 1005 1006 1007
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1008 1009 1010 1011
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1012
        if framework._non_static_mode():
1013
            parameter_list = parameters if parameters else self._parameter_list
1014

M
MRXLT 已提交
1015
            params_grads = []
1016
            for param in parameter_list:
1017
                if param.stop_gradient:
M
MRXLT 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026
                    continue
                if param._grad_ivar() is not None:
                    # create gradient tensor
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1027
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1028
            program = loss.block.program
1029 1030
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1031
                "Maybe that you should call paddle.mean to process the current loss.".format(
1032 1033 1034 1035
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1036
            with program_guard(program, startup_program):
1037
                from paddle.incubate.autograd.utils import prim_enabled
1038

1039
                if prim_enabled():
1040 1041 1042
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1043
                else:
1044 1045 1046
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np

                inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                linear = paddle.nn.Linear(10, 10)
                inp = paddle.to_tensor(inp)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
1091 1092 1093
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

    def _apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1110
        if framework._non_static_mode():
1111 1112 1113 1114
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1115 1116 1117
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1118
                    params_grads = self.append_regularization_ops(
1119 1120
                        params_grads, self.regularization
                    )
1121 1122 1123
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1124
                        params_grads['params'] = grad_clip(
1125 1126
                            params_grads['params']
                        )
1127

1128
                    params_grads['params'] = self.append_regularization_ops(
1129 1130
                        params_grads['params'], self.regularization
                    )
M
MRXLT 已提交
1131 1132 1133 1134 1135 1136 1137
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1138
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1139
        """Create and add backward regularization Operators
1140

1141 1142 1143
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1144
        if grad is None or (
1145 1146 1147 1148 1149 1150
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1161
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1162
            return _C_ops.add_n([grad, regularization_term])
1163
        elif framework._in_legacy_dygraph():
1164
            return _legacy_C_ops.sum([grad, regularization_term])
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1177 1178
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1179 1180 1181

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1182
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1183 1184 1185

        return new_grad

1186 1187 1188
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1189
        r"""Create and add backward regularization Operators
1190

1191 1192 1193 1194
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1195

1196 1197 1198 1199 1200
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1201

1202 1203 1204
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1205

1206 1207 1208 1209
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1210
        if framework._non_static_mode():
1211
            for param, grad in parameters_and_grads:
1212
                new_grad = self._create_regularization_of_grad(
1213 1214
                    param, grad, regularization
                )
1215 1216 1217 1218 1219
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1220 1221 1222 1223 1224
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1225 1226 1227 1228
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1229 1230
                            % regularization.__str__()
                        )
1231 1232
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1233 1234
                            param, grad, regularization
                        )
1235 1236 1237
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1238 1239 1240
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1241
        param_no_trainable = set(
1242 1243
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1244 1245 1246 1247 1248 1249
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1250
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1251 1252
        """
        Clear the gradients of all optimized parameters for model.
1253 1254

        If not, new gradient will accumulat on previous gradient.
1255 1256

        There are two method to clear grad: set_to_zero or delete grad.
1257

1258 1259
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1260

M
MRXLT 已提交
1261 1262
        Returns:
            None
1263

M
MRXLT 已提交
1264 1265 1266 1267 1268
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
1269

M
MRXLT 已提交
1270 1271
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1272
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1273
                # This can be any optimizer supported by dygraph.
1274
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1275 1276 1277 1278 1279 1280 1281
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1282
        param_list = []
1283
        if self._parameter_list is None or not isinstance(
1284 1285
            self._parameter_list[0], dict
        ):
1286 1287
            for p in self._parameter_list:
                if not p.stop_gradient:
1288
                    param_list.append(p)
1289 1290 1291 1292
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1293
                        param_list.append(p)
1294

J
Jiabin Yang 已提交
1295
        if _in_eager_without_dygraph_check():
1296
            for p in param_list:
1297
                p.clear_gradient(set_to_zero)
1298 1299
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1300

1301
    @imperative_base.no_grad
1302 1303 1304
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1323 1324
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1325 1326 1327 1328
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1329

M
MRXLT 已提交
1330
                import paddle
M
MRXLT 已提交
1331
                linear = paddle.nn.Linear(10, 10)
1332 1333
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1334 1335 1336 1337 1338 1339 1340 1341
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1342
                loss.backward()
M
MRXLT 已提交
1343 1344 1345
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1346 1347 1348
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1349
        parameter_list = parameters if parameters else self._parameter_list
1350

1351 1352 1353 1354 1355 1356
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1357

1358 1359 1360
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1361 1362 1363

        return optimize_ops, params_grads

L
Leo Chen 已提交
1364
    @imperative_base.no_grad
M
MRXLT 已提交
1365 1366 1367
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1368
        Execute the optimizer and update parameters once.
1369

M
MRXLT 已提交
1370 1371 1372 1373 1374 1375 1376 1377
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
1378

M
MRXLT 已提交
1379 1380
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1381
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1382
                # This can be any optimizer supported by dygraph.
1383
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1384 1385 1386 1387 1388 1389
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1400 1401 1402
            self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1415 1416 1417 1418 1419
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1435 1436
                "but received set, please use list instead."
            )
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1450 1451
                "some parameters appear in more than one parameter group"
            )
1452 1453 1454 1455 1456

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1457

1458 1459 1460 1461
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1462
            param.optimize_attr['learning_rate'] = param_group.get(
1463 1464
                'learning_rate', 1.0
            )
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

    @framework.dygraph_only
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1490 1491 1492
    def _append_optimize_multi_tensor_op(
        self, target_block, parameters_and_grads
    ):
1493
        """
1494 1495 1496
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass