optimizer.py 63.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
33
from paddle.regularizer import L2Decay
M
MRXLT 已提交
34

35
from ..fluid import framework, unique_name
36
from ..fluid.backward import _get_no_grad_set_name, append_backward
37
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
38
from ..fluid.layer_helper import LayerHelper
39
from .lr import LRScheduler
M
MRXLT 已提交
40

41 42
__all__ = []

M
MRXLT 已提交
43

44
@framework.static_only
45 46 47 48 49 50 51 52
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
53
    from paddle.incubate.autograd.primx import Transform, orig2prim
54

55
    program = default_main_program()
56 57 58
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
59
    block = program.current_block()
60
    for el in loss_list:
61 62 63
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


92
class Optimizer:
93
    r"""Optimizer Base class.
M
MRXLT 已提交
94 95 96 97 98 99

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
100 101
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
102
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
103 104 105 106
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
107
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
124 125
       Base class for optimizer.

M
MRXLT 已提交
126 127 128 129 130 131
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
132
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
133 134 135 136
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
137
            loss.backward()
M
MRXLT 已提交
138 139 140
            adam.step()
            adam.clear_grad()

141
            #Take the subclass sgd as an example
142
            #optimize parameters in linear_1 and linear2 in different options.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
159
                weight_decay=0.01)
R
Roc 已提交
160
            loss.backward()
161 162 163
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
164 165
    """

166
    @imperative_base.no_grad()
167 168 169 170 171 172 173 174
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
175

176 177 178 179
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
180
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
181 182
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
183 184 185 186
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
187 188 189 190
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
191 192
                    " as list of dict"
                )
193 194 195 196
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
197
        self._name = name
J
Jiabin Yang 已提交
198
        if framework._non_static_mode():
M
MRXLT 已提交
199 200 201 202 203
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
204 205
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
206 207 208 209
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
210 211 212
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
213 214
                                % weight_decay.__str__()
                            )
215 216
                            break

217
        if not isinstance(learning_rate, (float, LRScheduler)):
218
            raise TypeError(
219 220 221
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
222
        if grad_clip is not None:
223
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
224 225 226 227 228 229 230 231 232
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
233

M
MRXLT 已提交
234
        self._dtype = None
L
Leo Chen 已提交
235 236
        # Infer the dtype form parameter
        if self._parameter_list:
237 238
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
239 240 241
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
242 243 244
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
245

M
MRXLT 已提交
246 247
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
248
        self._learning_rate_map = {}
M
MRXLT 已提交
249 250 251 252
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
253
        self._accumulators = defaultdict(lambda: {})
M
MRXLT 已提交
254 255 256
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
257
        self._param_device_map = {}
M
MRXLT 已提交
258
        self.clear_gradients = self.clear_grad
259 260
        self._default_dict = {
            'weight_decay': self.regularization,
261
            'grad_clip': self._grad_clip,
262 263 264 265 266 267 268 269
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
270

271
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
272
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
273 274
        self._use_multi_tensor = None

275
        self._param_dict = self._create_multi_tensor_dict()
276
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
277
        self._already_create_accumulater = set()
278 279 280 281

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

282 283 284 285 286 287 288
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

289 290 291
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
292 293 294
    @framework.dygraph_only
    def state_dict(self):
        '''
295
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
296 297
        If the optimizer never be called(minimize function), the state_dict is empty.

298
        Args:
M
MRXLT 已提交
299 300 301 302
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
303

M
MRXLT 已提交
304 305 306 307
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
308
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
309 310 311 312 313 314 315 316 317

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
318 319 320 321
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
322
        # global step if use lr decay
323
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
324 325 326 327 328 329
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
330
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
331

332
        Args:
M
MRXLT 已提交
333 334 335
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
336

M
MRXLT 已提交
337 338 339 340 341
        Examples:
            .. code-block:: python

                import paddle

342
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
343

344 345
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
346

347
                scheduler = paddle.optimizer.lr.NoamDecay(
348 349 350 351 352 353
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
354

355
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
356 357 358
                adam.set_state_dict(opti_state_dict)

        '''
359
        if isinstance(self._learning_rate, LRScheduler):
360
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
361

362
        # NOTE: exclude learning rate scheduler's state from
363 364 365 366
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
367 368 369 370
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
371 372 373
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
374 375
                assert (
                    var_tmp.name in state_dict
376
                ), f"optimizer Tensor {var_tmp.name} not found"
M
MRXLT 已提交
377 378 379 380 381 382 383
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
384
                    load_para_np = np.array(load_para)
W
wanghuancoder 已提交
385
                elif isinstance(load_para, core.eager.Tensor):
386
                    load_para_np = np.array(load_para)
M
MRXLT 已提交
387 388 389
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
390 391 392 393 394 395 396 397 398 399 400
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
401

402 403 404 405 406
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
407 408 409 410 411 412 413

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
414 415 416 417 418 419
        def do_create():
            # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
            _lr_dtype = (
                paddle.get_default_dtype()
                if self._dtype is None
                else self._dtype
420
            )
421 422 423 424 425 426 427 428 429 430 431
            _lr_dtype = (
                paddle.float32
                if (
                    (
                        paddle.get_default_dtype() != "float16"
                        and _lr_dtype == paddle.float16
                    )
                    or (
                        paddle.get_default_dtype() != "bfloat16"
                        and _lr_dtype == paddle.bfloat16
                    )
432
                )
433
                else _lr_dtype
434
            )
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            if isinstance(self._learning_rate, LRScheduler):
                lr_var = self._global_learning_rate()
                # only create global lr_var once
                if not isinstance(lr_var, framework.Variable):
                    lr_name = unique_name.generate('learning_rate')
                    self._learning_rate._var_name = lr_name
                    lr_var = self.helper.create_global_variable(
                        name=lr_name,
                        shape=[],
                        persistable=True,
                        stop_gradient=True,
                        dtype=_lr_dtype,
                    )
                    main_prog = framework.default_main_program()
                    main_prog.lr_scheduler = self._learning_rate
                    main_prog.lr_var = lr_var

                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = lr_var

                lr_value = float(self._learning_rate())
                self.helper.set_variable_initializer(
                    lr_var,
                    initializer=paddle.nn.initializer.Constant(value=lr_value),
460
                )
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            elif isinstance(self._learning_rate, float):
                # only create global lr_var once
                lr = self._global_learning_rate()
                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = paddle.static.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[],
                        value=float(self._learning_rate),
                        dtype=_lr_dtype,
                        persistable=True,
                    )

        with paddle.fluid.framework.dygraph_guard_if_declarative():
            do_create()
M
MRXLT 已提交
479 480 481 482 483

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
484

485
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
486 487 488
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
489
            value (float): the value of learning rate
M
MRXLT 已提交
490 491 492

        Returns:
            None
493

M
MRXLT 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
516
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
517
            raise TypeError(
518
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
519 520
                % (type(value))
            )
521
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
522
            raise RuntimeError(
523
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
524
            )
525 526 527
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
528 529
            if in_dygraph_mode():
                place = _current_expected_place()
530 531 532 533 534 535 536
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
537 538
            else:
                global_block = framework.default_main_program().global_block()
539 540 541 542 543 544 545 546 547 548
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
549 550 551

    def get_lr(self):
        """
552
        Get current learning rate of optimizer.
553 554
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
555

M
MRXLT 已提交
556
        Returns:
557
            float: The current learning rate of optimizer.
M
MRXLT 已提交
558 559 560 561

        Examples:
            .. code-block:: python

562
                # train on default dynamic graph mode
M
MRXLT 已提交
563
                import paddle
564 565 566 567 568 569 570 571 572 573 574
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
575

576 577 578 579 580 581 582 583
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
584
                    adam.step()
585
                    scheduler.step()
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
605 606 607 608 609

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
610
            return self._learning_rate()
M
MRXLT 已提交
611 612 613 614 615 616 617 618 619 620 621

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
622
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
623 624 625 626 627 628 629
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
630 631 632 633
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
634
            else:
635 636 637 638
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
639 640
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
641 642 643
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

M
MRXLT 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

695 696 697 698 699 700 701 702 703 704
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
705 706 707 708 709 710 711 712 713 714 715
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
716 717 718 719
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
720
            if framework._non_static_mode():
M
MRXLT 已提交
721
                return self._accumulators[name][param.name]
722 723
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
724 725 726
                    name, param.name
                )
            )
727
        if shape is None:
M
MRXLT 已提交
728 729 730 731 732 733 734 735 736 737 738
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
739
            type=core.VarDesc.VarType.LOD_TENSOR
740 741
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
742
            shape=shape,
743 744
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
745 746
        if device is None:
            device = self._get_device_for_param(param.name)
747

W
wanghuancoder 已提交
748 749 750 751
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
752 753 754 755 756 757 758
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
759
            )
760 761 762
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
763 764 765 766
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
767
                )
M
MRXLT 已提交
768

J
Jiabin Yang 已提交
769
        if framework._non_static_mode():
M
MRXLT 已提交
770
            if len(self._accumulators_holder) > 0:
771 772 773 774 775
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
776
                var.set_value(self._accumulators_holder.pop(var_name))
M
MRXLT 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
793 794 795 796
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
797 798
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
799 800 801
                    name, param.name
                )
            )
M
MRXLT 已提交
802 803
        return self._accumulators[name][param.name]

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
832 833
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
834
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
835 836
                param_name = param_and_grad[0].name
                ops = target_block.ops
837 838
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
839 840 841 842 843
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
844 845
                            device_attr_name
                        )
M
MRXLT 已提交
846 847 848 849 850 851 852 853
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

854 855 856
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
884 885 886
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
887
            target_block = framework.default_main_program().blocks[
888 889
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
890 891 892

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
893

M
MRXLT 已提交
894 895
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
896 897
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
898 899
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
900
        ]:
901
            if (
902 903 904
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
905
            ):
906
                if isinstance(parameters_and_grads, list):
907
                    assert param_group_idx == 0
908 909 910 911 912 913 914
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
915
                        param_group_idx,
916
                    )
917 918
                else:
                    self._update_param_group(parameters_and_grads)
919 920 921 922 923 924 925
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
926
                        param_group_idx,
927
                    )
J
Jiabin Yang 已提交
928
            if framework._non_static_mode():
929
                self._append_optimize_multi_tensor_op(
930 931 932
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
933
                )
934
            else:
935 936 937
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
938 939 940
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
941
                for param_and_grad in parameters_and_grads:
942 943 944 945
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
946 947 948
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
949 950
                    param_grad_list
                ), name_scope("optimizer"):
951 952 953
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
954 955 956
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
957
                        )
958
        else:
J
Jiabin Yang 已提交
959
            if not framework._non_static_mode():
960 961 962 963 964 965 966 967
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
968

969
            if isinstance(parameters_and_grads, list):
970 971 972 973 974 975 976 977 978
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
979
            else:
980 981
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
982 983
                    p[0]
                    for p in params_acc_dict['params']
984 985
                    if not p[0].stop_gradient
                ]
986 987
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(target_block, params_acc_dict)
988

J
Jiabin Yang 已提交
989
            if framework._non_static_mode():
W
wanghuancoder 已提交
990 991 992 993
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
994
                else:
W
wanghuancoder 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
1010
                                param_grad_dict = {}
W
wanghuancoder 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1022 1023
            else:
                for param_and_grad in parameters_and_grads:
1024 1025
                    if param_and_grad[1] is None:
                        continue
1026
                    with param_and_grad[0].block.program._optimized_guard(
1027 1028
                        param_and_grad
                    ), name_scope("optimizer"):
1029
                        if param_and_grad[0].stop_gradient is False:
1030
                            device = self._get_device_for_param(
1031 1032
                                param_and_grad[0].name
                            )
1033 1034
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1035 1036
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1048 1049 1050 1051 1052 1053 1054 1055
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1081 1082
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1083
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1084
                # This can be any optimizer supported by dygraph.
1085
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1086
                                            parameters = linear.parameters())
1087
                out = linear(x)
M
MRXLT 已提交
1088 1089 1090 1091 1092
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1093
        if framework._non_static_mode():
M
MRXLT 已提交
1094 1095 1096 1097
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1098 1099 1100 1101
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1102
        if framework.in_dygraph_mode():
1103
            parameter_list = parameters if parameters else self._parameter_list
1104

1105 1106 1107 1108 1109 1110 1111
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1112 1113
        else:
            if callbacks is None:
1114
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1115
            else:
1116
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1117
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1118 1119
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
M
MRXLT 已提交
1120
                "Maybe that you should call paddle.mean to process the current loss.".format(
1121 1122 1123 1124
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1125
            with program_guard(program, startup_program):
1126
                from paddle.incubate.autograd.utils import prim_enabled
1127

1128
                if prim_enabled():
1129 1130 1131
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1132
                else:
1133 1134 1135
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1157
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1175
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1176 1177

        # Add regularization if any
1178 1179 1180
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1181 1182 1183 1184

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1185 1186 1187
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1199
        if framework._non_static_mode():
1200 1201 1202 1203
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1204 1205 1206
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1207
                    params_grads = self.append_regularization_ops(
1208 1209
                        params_grads, self.regularization
                    )
1210 1211 1212
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1213
                        params_grads['params'] = grad_clip(
1214 1215
                            params_grads['params']
                        )
1216

1217
                    params_grads['params'] = self.append_regularization_ops(
1218 1219
                        params_grads['params'], self.regularization
                    )
1220 1221 1222
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1223
        else:
1224
            assert param_group_idx == 0
M
MRXLT 已提交
1225 1226 1227 1228 1229
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1230
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1231
        """Create and add backward regularization Operators
1232

1233 1234 1235
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1236
        if grad is None or (
1237 1238 1239 1240 1241 1242
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1253
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1254
            return _C_ops.add_n([grad, regularization_term])
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1269

1270 1271 1272
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1273

1274
            return new_grad
1275

1276 1277 1278
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1279
        r"""Create and add backward regularization Operators
1280

1281 1282 1283 1284
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1285

1286 1287 1288 1289 1290
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1291

1292 1293 1294
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1295

1296 1297 1298 1299
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1300
        if framework._non_static_mode():
1301
            for param, grad in parameters_and_grads:
1302
                new_grad = self._create_regularization_of_grad(
1303 1304
                    param, grad, regularization
                )
1305 1306 1307 1308 1309
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1310 1311 1312 1313 1314
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1315 1316 1317 1318
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1319 1320
                            % regularization.__str__()
                        )
1321 1322
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1323 1324
                            param, grad, regularization
                        )
1325 1326 1327
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1328 1329 1330
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1331 1332 1333
        param_no_trainable = {
            param.name for param in parameters if param.stop_gradient is True
        }
M
MRXLT 已提交
1334 1335 1336 1337 1338
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1339
    @framework.non_static_only
1340
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1341 1342
        """
        Clear the gradients of all optimized parameters for model.
1343 1344

        If not, new gradient will accumulat on previous gradient.
1345 1346

        There are two method to clear grad: set_to_zero or delete grad.
1347

1348 1349
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1350

M
MRXLT 已提交
1351 1352
        Returns:
            None
1353

M
MRXLT 已提交
1354 1355 1356 1357
        Examples:
            .. code-block:: python

                import paddle
1358

1359
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1360
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1361
                # This can be any optimizer supported by dygraph.
1362
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1363 1364 1365 1366 1367 1368 1369
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1370
        param_list = []
1371
        if self._parameter_list is None or not isinstance(
1372 1373
            self._parameter_list[0], dict
        ):
1374 1375
            for p in self._parameter_list:
                if not p.stop_gradient:
1376
                    param_list.append(p)
1377 1378 1379 1380
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1381
                        param_list.append(p)
1382

J
Jiabin Yang 已提交
1383
        if _in_eager_without_dygraph_check():
1384
            for p in param_list:
1385
                p.clear_gradient(set_to_zero)
1386 1387
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1388

1389
    @imperative_base.no_grad()
1390 1391 1392
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1411 1412
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1413 1414 1415 1416
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1417

M
MRXLT 已提交
1418
                import paddle
M
MRXLT 已提交
1419
                linear = paddle.nn.Linear(10, 10)
1420 1421
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1422 1423 1424 1425 1426 1427 1428 1429
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1430
                loss.backward()
M
MRXLT 已提交
1431 1432 1433
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1434 1435 1436
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1437
        parameter_list = parameters if parameters else self._parameter_list
1438

1439 1440 1441 1442 1443 1444
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1445

1446 1447 1448
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1449 1450 1451

        return optimize_ops, params_grads

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    def _declarative_step(self):
        """
        In declarative mode, we forward `call step` to `call apply_gradients`
        """
        params = (
            paddle.static.default_main_program().global_block().all_parameters()
        )
        assert not isinstance(
            self._parameter_list[0], dict
        ), "Only list of parameters is supported while using optimizer in @paddle.jit.static."
        selected_params = {param.name for param in self._parameter_list}
        parameters = [param for param in params if param.trainable]
        parameters = list(
            filter(
                lambda x: x.name in selected_params and hasattr(x, "grad"),
                parameters,
            )
        )
        params_grads = [(param, param.grad) for param in parameters]
        optimize_ops = self.apply_gradients(params_grads)
        return

1474
    @imperative_base.no_grad()
1475
    @framework.non_static_only
M
MRXLT 已提交
1476 1477
    def step(self):
        """
M
MRXLT 已提交
1478
        Execute the optimizer and update parameters once.
1479

M
MRXLT 已提交
1480 1481 1482 1483 1484 1485 1486
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1487

1488
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1489
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1490
                # This can be any optimizer supported by dygraph.
1491
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1492
                                        parameters = linear.parameters())
M
MRXLT 已提交
1493 1494 1495 1496 1497
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1498 1499 1500
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1511
            self._apply_optimize(
1512 1513 1514 1515
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1516
            )
1517 1518 1519

        else:
            # optimize parameters in groups
1520
            for idx, param_group in enumerate(self._param_groups):
1521
                params_grads = defaultdict(lambda: [])
1522 1523 1524 1525 1526 1527 1528
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1529 1530 1531
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1532 1533 1534 1535
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1536
                )
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1552 1553
                "but received set, please use list instead."
            )
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1567 1568
                "some parameters appear in more than one parameter group"
            )
1569 1570 1571 1572 1573 1574 1575 1576

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1577
            param.optimize_attr['learning_rate'] = param_group.get(
1578 1579
                'learning_rate', 1.0
            )
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1591 1592

    @framework.dygraph_only
1593
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1605
    def _append_optimize_multi_tensor_op(
1606
        self, target_block, parameters_and_grads, param_group_idx
1607
    ):
1608
        """
1609 1610 1611
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )