optimizer.py 62.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
J
Jiabin Yang 已提交
197
        if framework._non_static_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
228

M
MRXLT 已提交
229 230 231 232 233
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
234

M
MRXLT 已提交
235
        self._dtype = None
L
Leo Chen 已提交
236 237
        # Infer the dtype form parameter
        if self._parameter_list:
238 239
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
240 241 242
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
243 244 245
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
246

M
MRXLT 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
260 261
        self._default_dict = {
            'weight_decay': self.regularization,
262
            'grad_clip': self._grad_clip,
263 264 265 266 267 268 269 270
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
271

272
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
273
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
274 275
        self._use_multi_tensor = None

276
        self._param_dict = self._create_multi_tensor_dict()
277
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
278
        self._already_create_accumulater = set()
279 280 281 282

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

283 284 285 286 287 288 289
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

290 291 292
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
293 294 295
    @framework.dygraph_only
    def state_dict(self):
        '''
296
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
297 298
        If the optimizer never be called(minimize function), the state_dict is empty.

299
        Args:
M
MRXLT 已提交
300 301 302 303
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
304

M
MRXLT 已提交
305 306 307 308
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
309
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
310 311 312 313 314 315 316 317 318

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
319 320 321 322
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
323
        # global step if use lr decay
324
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
325 326 327 328 329 330
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
331
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
332

333
        Args:
M
MRXLT 已提交
334 335 336
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
337

M
MRXLT 已提交
338 339 340 341 342
        Examples:
            .. code-block:: python

                import paddle

343
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
344

345 346
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
347

348
                scheduler = paddle.optimizer.lr.NoamDecay(
349 350 351 352 353 354
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
355

356
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
357 358 359
                adam.set_state_dict(opti_state_dict)

        '''
360
        if isinstance(self._learning_rate, LRScheduler):
361
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
362

363
        # NOTE: exclude learning rate scheduler's state from
364 365 366 367
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
368 369 370 371
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
372 373 374
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
375 376 377
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
391 392 393 394 395 396 397 398 399 400 401
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
402

403 404 405 406 407
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
408 409 410 411 412 413 414

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
415
        # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
416 417 418 419 420 421
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
422 423 424 425 426 427 428 429
                (
                    paddle.get_default_dtype() != "float16"
                    and _lr_dtype == paddle.float16
                )
                or (
                    paddle.get_default_dtype() != "bfloat16"
                    and _lr_dtype == paddle.bfloat16
                )
430 431 432
            )
            else _lr_dtype
        )
433
        if isinstance(self._learning_rate, LRScheduler):
434 435 436 437 438
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
439 440
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
441
                    shape=[],
442 443 444 445
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
446 447 448
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
449

450
                self._learning_rate_map[
451 452
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
453

454 455
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
456 457
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
458
            )
459 460 461
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
462 463 464
            if isinstance(lr, framework.Variable):
                return
            else:
465 466
                self._learning_rate_map[
                    framework.default_main_program()
467
                ] = paddle.static.create_global_var(
468
                    name=unique_name.generate("learning_rate"),
469
                    shape=[],
470
                    value=float(self._learning_rate),
471
                    dtype=_lr_dtype,
472 473
                    persistable=True,
                )
M
MRXLT 已提交
474 475 476 477 478

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
479

480
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
481 482 483
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
484
            value (float): the value of learning rate
M
MRXLT 已提交
485 486 487

        Returns:
            None
488

M
MRXLT 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
511
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
512
            raise TypeError(
513
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
514 515
                % (type(value))
            )
516
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
517
            raise RuntimeError(
518
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
519
            )
520 521 522
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
523 524
            if in_dygraph_mode():
                place = _current_expected_place()
525 526 527 528 529 530 531
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
532 533
            else:
                global_block = framework.default_main_program().global_block()
534 535 536 537 538 539 540 541 542 543
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
544 545 546

    def get_lr(self):
        """
547
        Get current learning rate of optimizer.
548 549
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
550

M
MRXLT 已提交
551
        Returns:
552
            float: The current learning rate of optimizer.
M
MRXLT 已提交
553 554 555 556

        Examples:
            .. code-block:: python

557
                # train on default dynamic graph mode
M
MRXLT 已提交
558
                import paddle
559 560 561 562 563 564 565 566 567 568 569
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
570

571 572 573 574 575 576 577 578
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
579
                    adam.step()
580
                    scheduler.step()
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
600 601 602 603 604

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
605
            return self._learning_rate()
M
MRXLT 已提交
606 607 608 609 610 611 612 613 614 615 616

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
617
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
618 619 620 621 622 623 624
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
625 626 627 628
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
629
            else:
630 631 632 633
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
634 635
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
636 637 638
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

M
MRXLT 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

690 691 692 693 694 695 696 697 698 699
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
700 701 702 703 704 705 706 707 708 709 710
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
711 712 713 714
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
715
            if framework._non_static_mode():
M
MRXLT 已提交
716
                return self._accumulators[name][param.name]
717 718
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
719 720 721
                    name, param.name
                )
            )
722
        if shape is None:
M
MRXLT 已提交
723 724 725 726 727 728 729 730 731 732 733
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
734
            type=core.VarDesc.VarType.LOD_TENSOR
735 736
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
737
            shape=shape,
738 739
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
740 741
        if device is None:
            device = self._get_device_for_param(param.name)
742

W
wanghuancoder 已提交
743 744 745 746
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
747 748 749 750 751 752 753
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
754
            )
755 756 757
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
758 759 760 761
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
762
                )
M
MRXLT 已提交
763

J
Jiabin Yang 已提交
764
        if framework._non_static_mode():
M
MRXLT 已提交
765
            if len(self._accumulators_holder) > 0:
766 767 768 769 770
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
788 789 790 791
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
792 793
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
794 795 796
                    name, param.name
                )
            )
M
MRXLT 已提交
797 798
        return self._accumulators[name][param.name]

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
827 828
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
829
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
830 831
                param_name = param_and_grad[0].name
                ops = target_block.ops
832 833
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
834 835 836 837 838
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
839 840
                            device_attr_name
                        )
M
MRXLT 已提交
841 842 843 844 845 846 847 848
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

849 850 851
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
879 880 881
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
882
            target_block = framework.default_main_program().blocks[
883 884
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
885 886 887

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
888

M
MRXLT 已提交
889 890
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
891 892
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
893 894
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
895
        ]:
896
            if (
897 898 899
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
900
            ):
901
                if isinstance(parameters_and_grads, list):
902
                    assert param_group_idx == 0
903 904 905 906 907 908 909
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
910
                        param_group_idx,
911
                    )
912 913
                else:
                    self._update_param_group(parameters_and_grads)
914 915 916 917 918 919 920
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
921
                        param_group_idx,
922
                    )
J
Jiabin Yang 已提交
923
            if framework._non_static_mode():
924
                self._append_optimize_multi_tensor_op(
925 926 927
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
928
                )
929
            else:
930 931 932
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
933 934 935
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
936
                for param_and_grad in parameters_and_grads:
937 938 939 940
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
941 942 943
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
944 945
                    param_grad_list
                ), name_scope("optimizer"):
946 947 948
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
949 950 951
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
952
                        )
953
        else:
J
Jiabin Yang 已提交
954
            if not framework._non_static_mode():
955 956 957 958 959 960 961 962
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
963

964
            if isinstance(parameters_and_grads, list):
965 966 967 968 969 970 971 972
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
973
            else:
974 975
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
976 977
                    p[0]
                    for p in params_acc_dict['params']
978 979 980 981
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
982
            if framework._non_static_mode():
W
wanghuancoder 已提交
983 984 985 986
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
987
                else:
W
wanghuancoder 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                param_grad_dict = dict()
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1015 1016
            else:
                for param_and_grad in parameters_and_grads:
1017 1018
                    if param_and_grad[1] is None:
                        continue
1019
                    with param_and_grad[0].block.program._optimized_guard(
1020 1021
                        param_and_grad
                    ), name_scope("optimizer"):
1022
                        if param_and_grad[0].stop_gradient is False:
1023
                            device = self._get_device_for_param(
1024 1025
                                param_and_grad[0].name
                            )
1026 1027
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1028 1029
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1041 1042 1043 1044 1045 1046 1047 1048
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1074 1075
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1076
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1077
                # This can be any optimizer supported by dygraph.
1078
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1079
                                            parameters = linear.parameters())
1080
                out = linear(x)
M
MRXLT 已提交
1081 1082 1083 1084 1085
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1086
        if framework._non_static_mode():
M
MRXLT 已提交
1087 1088 1089 1090
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1091 1092 1093 1094
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1095
        if framework.in_dygraph_mode():
1096
            parameter_list = parameters if parameters else self._parameter_list
1097

1098 1099 1100 1101 1102 1103 1104
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1105 1106
        else:
            if callbacks is None:
1107
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1108
            else:
1109
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1110
            program = loss.block.program
1111 1112
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1113
                "Maybe that you should call paddle.mean to process the current loss.".format(
1114 1115 1116 1117
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1118
            with program_guard(program, startup_program):
1119
                from paddle.incubate.autograd.utils import prim_enabled
1120

1121
                if prim_enabled():
1122 1123 1124
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1125
                else:
1126 1127 1128
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1150
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1168
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1169 1170

        # Add regularization if any
1171 1172 1173
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1174 1175 1176 1177

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1178 1179 1180
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1192
        if framework._non_static_mode():
1193 1194 1195 1196
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1197 1198 1199
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1200
                    params_grads = self.append_regularization_ops(
1201 1202
                        params_grads, self.regularization
                    )
1203 1204 1205
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1206
                        params_grads['params'] = grad_clip(
1207 1208
                            params_grads['params']
                        )
1209

1210
                    params_grads['params'] = self.append_regularization_ops(
1211 1212
                        params_grads['params'], self.regularization
                    )
1213 1214 1215
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1216
        else:
1217
            assert param_group_idx == 0
M
MRXLT 已提交
1218 1219 1220 1221 1222
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1223
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1224
        """Create and add backward regularization Operators
1225

1226 1227 1228
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1229
        if grad is None or (
1230 1231 1232 1233 1234 1235
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1246
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1247
            return _C_ops.add_n([grad, regularization_term])
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1262

1263 1264 1265
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1266

1267
            return new_grad
1268

1269 1270 1271
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1272
        r"""Create and add backward regularization Operators
1273

1274 1275 1276 1277
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1278

1279 1280 1281 1282 1283
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1284

1285 1286 1287
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1288

1289 1290 1291 1292
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1293
        if framework._non_static_mode():
1294
            for param, grad in parameters_and_grads:
1295
                new_grad = self._create_regularization_of_grad(
1296 1297
                    param, grad, regularization
                )
1298 1299 1300 1301 1302
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1303 1304 1305 1306 1307
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1308 1309 1310 1311
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1312 1313
                            % regularization.__str__()
                        )
1314 1315
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1316 1317
                            param, grad, regularization
                        )
1318 1319 1320
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1321 1322 1323
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1324
        param_no_trainable = set(
1325 1326
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1327 1328 1329 1330 1331 1332
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1333
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1334 1335
        """
        Clear the gradients of all optimized parameters for model.
1336 1337

        If not, new gradient will accumulat on previous gradient.
1338 1339

        There are two method to clear grad: set_to_zero or delete grad.
1340

1341 1342
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1343

M
MRXLT 已提交
1344 1345
        Returns:
            None
1346

M
MRXLT 已提交
1347 1348 1349 1350
        Examples:
            .. code-block:: python

                import paddle
1351

1352
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1353
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1354
                # This can be any optimizer supported by dygraph.
1355
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1356 1357 1358 1359 1360 1361 1362
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1363
        param_list = []
1364
        if self._parameter_list is None or not isinstance(
1365 1366
            self._parameter_list[0], dict
        ):
1367 1368
            for p in self._parameter_list:
                if not p.stop_gradient:
1369
                    param_list.append(p)
1370 1371 1372 1373
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1374
                        param_list.append(p)
1375

J
Jiabin Yang 已提交
1376
        if _in_eager_without_dygraph_check():
1377
            for p in param_list:
1378
                p.clear_gradient(set_to_zero)
1379 1380
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1381

1382
    @imperative_base.no_grad()
1383 1384 1385
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1404 1405
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1406 1407 1408 1409
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1410

M
MRXLT 已提交
1411
                import paddle
M
MRXLT 已提交
1412
                linear = paddle.nn.Linear(10, 10)
1413 1414
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1415 1416 1417 1418 1419 1420 1421 1422
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1423
                loss.backward()
M
MRXLT 已提交
1424 1425 1426
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1427 1428 1429
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1430
        parameter_list = parameters if parameters else self._parameter_list
1431

1432 1433 1434 1435 1436 1437
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1438

1439 1440 1441
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1442 1443 1444

        return optimize_ops, params_grads

1445
    @imperative_base.no_grad()
M
MRXLT 已提交
1446 1447 1448
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1449
        Execute the optimizer and update parameters once.
1450

M
MRXLT 已提交
1451 1452 1453 1454 1455 1456 1457
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1458

1459
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1460
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1461
                # This can be any optimizer supported by dygraph.
1462
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1463
                                        parameters = linear.parameters())
M
MRXLT 已提交
1464 1465 1466 1467 1468
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1479
            self._apply_optimize(
1480 1481 1482 1483
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1484
            )
1485 1486 1487

        else:
            # optimize parameters in groups
1488
            for idx, param_group in enumerate(self._param_groups):
1489 1490 1491 1492 1493 1494 1495 1496
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1497 1498 1499
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1500 1501 1502 1503
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1504
                )
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1520 1521
                "but received set, please use list instead."
            )
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1535 1536
                "some parameters appear in more than one parameter group"
            )
1537 1538 1539 1540 1541

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1542

1543 1544 1545 1546
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1547
            param.optimize_attr['learning_rate'] = param_group.get(
1548 1549
                'learning_rate', 1.0
            )
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1561 1562

    @framework.dygraph_only
1563
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1575
    def _append_optimize_multi_tensor_op(
1576
        self, target_block, parameters_and_grads, param_group_idx
1577
    ):
1578
        """
1579 1580 1581
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )