pybind.cc 39.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
P
peizhilin 已提交
39
#ifndef _WIN32
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
P
peizhilin 已提交
41
#endif
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
46
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
47
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52 53 54
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
W
wangguibao 已提交
59
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
90
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
91
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
92 93 94 95 96 97
  return true;
#else
  return false;
#endif
}

98
PYBIND11_PLUGIN(core) {
Y
Refine  
Yu Yang 已提交
99
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
100
  py::module m("core", "C++ core of PaddlePaddle");
101

102 103 104 105
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

106
  BindException(&m);
Y
Yu Yang 已提交
107

108 109 110
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
111
      .def("_get_dims",
112
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
113
      .def("_set_dims",
Q
qijun 已提交
114
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
115
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
116
           })
Y
yuyang18 已提交
117
      .def("_set_layout",
D
dzhwinter 已提交
118 119 120
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
121
      .def("_alloc_float",
D
dzhwinter 已提交
122
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
123
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
124
           })
Y
yuyang18 已提交
125
      .def("_alloc_float",
Y
Yu Yang 已提交
126
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
127
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
128
           })
Y
yuyang18 已提交
129
      .def("_alloc_int",
Y
Yu Yang 已提交
130
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
131
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
132
           })
Y
yuyang18 已提交
133
      .def("_alloc_int",
D
dzhwinter 已提交
134
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
135
             self.mutable_data<int>(place);
Q
qijun 已提交
136
           })
Y
yuyang18 已提交
137
      .def("_alloc_int",
C
chengduoZH 已提交
138 139 140
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
141
      .def("_alloc_float",
C
chengduoZH 已提交
142 143 144
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
145 146
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
147
      .def("set", PyCPUTensorSetFromArray<double>)
148
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
149
      .def("set", PyCPUTensorSetFromArray<bool>)
150
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
151
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
152
      .def("set", PyCPUTensorSetFromArray<int8_t>)
153
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
154 155
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
156
      .def("set", PyCUDATensorSetFromArray<double>)
157
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
158
      .def("set", PyCUDATensorSetFromArray<bool>)
159
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
160
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
161
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
162 163 164 165 166 167
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
168
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
169
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
170
#endif
171
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
172 173 174 175 176
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
177

X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
191
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
192
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
193
     columns, hence [5, 2].
X
Xin Pan 已提交
194 195 196

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
197 198
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
222 223
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
224 225 226 227 228 229 230 231 232 233 234 235 236 237
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
238
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
239 240 241 242 243
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
244
      .def("set_lod",
245
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
246
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
247
             LoD new_lod;
248 249
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
250 251
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
252
             self.set_lod(new_lod);
D
dangqingqing 已提交
253
           })
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
279
      // Set above comments of set_lod.
280 281 282 283 284 285 286 287 288 289 290 291 292
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
293 294
      });

Q
qijun 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
308 309 310 311 312 313 314 315 316
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
317
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
318
      .def("rows", [](SelectedRows &self) {
319 320 321 322 323
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
324
      });
Q
qijun 已提交
325

326
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
327 328 329

All parameter, weight, gradient are variables in Paddle.
)DOC")
330
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
331
      .def("set_int",
332 333
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
334 335 336 337 338 339 340
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
341
      .def("get_tensor",
342 343
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
344 345
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
346 347 348
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
349 350 351 352 353
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
354 355 356
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
357
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
358 359 360 361 362
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
363 364 365

#endif
#ifndef _WIN32
Y
Refine  
Yu Yang 已提交
366 367 368 369 370
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
371 372
           py::return_value_policy::reference)
#endif
Y
Yu Yang 已提交
373
      ;  // NOLINT
374

P
peizhilin 已提交
375
#if !defined(_WIN32)
Y
Refine  
Yu Yang 已提交
376
  py::class_<framework::ReaderHolder>(m, "Reader", "")
377
      .def("reset", &framework::ReaderHolder::ResetAll);
P
peizhilin 已提交
378
#endif
Y
Refine  
Yu Yang 已提交
379

S
sneaxiy 已提交
380 381 382 383
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
384 385
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
386
      .def("push",
S
sneaxiy 已提交
387
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
388
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
389
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
390
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
391
           })
S
sneaxiy 已提交
392 393 394 395
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
396

S
sneaxiy 已提交
397
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
398
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
399
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
400
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
401 402 403 404 405 406
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
407 408
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
409
              return holder->GetQueue();
S
sneaxiy 已提交
410
            },
S
sneaxiy 已提交
411
        py::return_value_policy::copy);
S
sneaxiy 已提交
412

413
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
414
      .def("var",
415
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
416
             return self.Var(name);
Y
Yu Yang 已提交
417
           },
418
           py::return_value_policy::reference)
419
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
420
      .def(py::init<>())
421
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
422
           py::return_value_policy::reference)
Y
Yu Yang 已提交
423
      .def("drop_kids", &Scope::DropKids);
424

Y
Yu Yang 已提交
425 426
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
427 428
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
429 430 431 432 433 434 435 436 437 438
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
439 440
    return ret_values;
  });
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
457
  m.def("prune", [](const ProgramDesc &origin,
458
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
459
    ProgramDesc prog_with_targets(origin);
460
    for (const auto &t : targets) {
461
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
462
    }
463
    proto::ProgramDesc pruned_desc;
464
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
465
    return new ProgramDesc(pruned_desc);
466
  });
467 468 469 470
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
471 472 473
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
474 475
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
476
  // clang-format off
Y
Yu Yang 已提交
477
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
478 479
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
480
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
481 482 483
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
484
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
485
                      -> paddle::platform::DeviceContext* {
486
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
487
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
488
#else
Q
qijun 已提交
489
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
490
#endif
C
chengduoZH 已提交
491 492 493 494 495 496 497 498 499 500 501
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
502
// clang-format on
P
peizhilin 已提交
503
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
504 505
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
506
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
507
      .def(py::init<int>())
D
dzhwinter 已提交
508
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
509

510 511 512
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
513

C
chengduoZH 已提交
514 515 516 517
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
518 519 520 521 522 523 524
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
525
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
526
             self = gpu_place;
C
chengduoZH 已提交
527 528
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
529 530
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
531
      });
Y
Yu Yang 已提交
532

Y
Yu Yang 已提交
533 534 535
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
536
                    proto::OpDesc desc;
Y
Yu Yang 已提交
537 538 539 540 541
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
542
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
543
                  })
544
      .def("run",
545
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
546 547 548
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
549
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
550 551 552 553 554
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
555 556 557 558 559 560 561
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
562 563
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
564
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
565
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
566 567 568 569
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
570

F
fengjiayi 已提交
571
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
572
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
573
      .def("close", &Executor::Close)
S
sneaxiy 已提交
574 575 576 577 578
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
579

D
dzhwinter 已提交
580
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
581
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
582 583
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
584

585
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
586
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
587 588 589 590 591 592
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
593

594
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
595
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
596

X
Xin Pan 已提交
597 598
  m.def("_is_program_version_supported", IsProgramVersionSupported);

599 600 601 602 603
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
604

Y
Yu Yang 已提交
605 606 607 608 609 610 611 612 613
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
614
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
615 616
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
633 634 635
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
636
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
637
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
638
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
639

P
peizhilin 已提交
640
#ifndef _WIN32
D
dangqingqing 已提交
641 642 643
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
644
#endif
P
peizhilin 已提交
645
#endif
Y
Yu Yang 已提交
646

P
peizhilin 已提交
647
#ifndef _WIN32
648 649 650 651
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
652
      .value("kAll", platform::ProfilerState::kAll)
653 654 655 656 657 658 659 660 661 662 663 664 665
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
666
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
667
  m.def("reset_profiler", platform::ResetProfiler);
P
peizhilin 已提交
668
#endif
Y
Yu Yang 已提交
669

670 671
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
672 673 674 675 676
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
677 678 679
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
680

X
fix  
Xin Pan 已提交
681 682
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
683 684 685 686 687 688 689 690 691 692 693 694 695 696
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

P
peizhilin 已提交
697
#ifndef _WIN32
Y
yuyang18 已提交
698
  // -- python binds for parallel executor.
Y
yuyang18 已提交
699
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
700 701 702 703
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
704 705 706 707 708 709 710 711 712 713 714
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
715 716 717

        )DOC");

Y
yuyang18 已提交
718
  exec_strategy.def(py::init())
Y
yuyang18 已提交
719 720 721 722 723
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
724 725 726 727 728 729 730 731 732 733
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
734
      .def_property(
735 736 737 738
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
739 740 741 742
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
743 744 745 746 747
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
748 749 750 751
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
752 753 754 755 756 757 758
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
759 760 761 762 763 764 765 766 767 768 769
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
770 771 772 773 774 775
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
776

Y
yuyang18 已提交
777
  exec_strategy.def_property(
Y
yuyang18 已提交
778 779 780 781 782 783 784
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
785 786
      });

C
chengduo 已提交
787 788 789 790
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
791 792 793 794 795 796 797 798 799 800 801
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
802
)DOC");
Y
yuyang18 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
819
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
820
            self.reduce_ = strategy;
C
chengduo 已提交
821 822 823 824 825 826 827
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
828 829 830 831 832
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
833
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
834
            self.gradient_scale_ = strategy;
C
chengduo 已提交
835 836 837 838 839 840
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
841 842 843 844
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
845
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
846
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
847 848 849 850
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
851 852 853
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
854
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
855
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
856 857
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
858 859 860 861 862 863
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
864
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
865 866 867 868 869 870 871 872 873
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
874
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
875 876 877
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
878 879 880 881 882 883
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
884
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
885 886 887 888 889
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
890
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
891
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
892 893 894 895 896
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
897 898 899 900

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
901
                  const std::string &, Scope *, std::vector<Scope *> &,
902 903
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
904 905 906 907
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
908 909 910 911 912
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
913 914 915 916
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
917 918 919 920 921 922
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
923

924
  BindRecordIOWriter(&m);
P
peizhilin 已提交
925
#endif
W
wangguibao 已提交
926
  BindAsyncExecutor(&m);
927
  return m.ptr();
L
Luo Tao 已提交
928
}
929
}  // namespace pybind
930
}  // namespace paddle