norm.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
姜永久 已提交
20
from paddle.fluid.framework import in_dygraph_mode
21

22 23 24
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

25 26
__all__ = []

27 28

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
29
    r"""
30
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
31 32 33

    .. math::

34
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
35

36
    .. math::
37
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
38

39
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
40 41


N
Noel 已提交
42
    Parameters:
43
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
44
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
45
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
46 47 48 49 50 51 52 53 54 55 56 57 58 59
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
60
            x = paddle.arange(6, dtype="float32").reshape([2,3])
61
            y = F.normalize(x)
62 63 64 65
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
66 67

            y = F.normalize(x, p=1.5)
68 69 70 71
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
72 73

            y = F.normalize(x, axis=0)
74 75 76 77
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
78
    """
79

80 81
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
82 83
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
84

姜永久 已提交
85 86 87 88 89
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
90
        )
姜永久 已提交
91 92 93 94 95
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
96
            )
97

姜永久 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
112 113


114 115 116 117 118 119 120 121 122 123 124 125 126
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
127 128 129
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
co63oc 已提交
130
    nn.functional.batch_norm is used for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
131

132 133 134 135 136
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
137
        bias(Tensor): The bias tensor of batch_norm can not be None.
138
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
139
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
140 141
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
142
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
143 144 145 146 147 148 149 150
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
176 177 178 179 180 181 182
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
183
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
184 185
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
186
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
187 188
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
189

F
Feiyu Chan 已提交
190
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
191

192
    if use_global_stats is None:
C
ceci3 已提交
193 194 195 196 197
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

198
    if in_dygraph_mode():
199
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
200 201 202
            x,
            running_mean,
            running_var,
203 204 205
            weight,
            bias,
            not training,
206 207 208 209 210 211
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )
W
Weilong Wu 已提交
212
        return batch_norm_out
213

姜永久 已提交
214 215
    else:
        check_variable_and_dtype(
216
            x, 'input', ['float16', 'uint16', 'float32', 'float64'], 'BatchNorm'
217
        )
218

姜永久 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())
240
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
241

242
        param_dtype = (
243 244 245
            x.dtype
            if convert_dtype(x.dtype) not in ['float16', 'uint16']
            else 'float32'
246
        )
姜永久 已提交
247 248
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
249
        )
姜永久 已提交
250 251
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
252
        )
姜永久 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
269

姜永久 已提交
270 271
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
272
        )
273

姜永久 已提交
274
        return helper.append_activation(batch_norm_out)
275 276


277 278 279
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
280
    """
281 282
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
283

284
    Parameters:
285
        x(Tensor): Input Tensor. It's data type should be bfloat16, float16, float32, float64.
286 287 288 289 290 291
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
292 293 294
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
295 296 297 298 299 300 301 302 303 304

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

305
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
306
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
307
          print(layer_norm_out)
308 309 310
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
311 312 313 314 315 316
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
317 318
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
319

320 321
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
322 323 324 325
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
326
        str_normalized_shape = str(normalized_shape)
327 328 329 330 331 332 333 334
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
335

H
hong 已提交
336
    if in_dygraph_mode():
337
        out = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
338
        return out
H
hong 已提交
339

姜永久 已提交
340 341
    else:
        check_variable_and_dtype(
342
            x, 'input', ['uint16', 'float16', 'float32', 'float64'], 'LayerNorm'
姜永久 已提交
343 344
        )

345
        inputs = {}
姜永久 已提交
346 347 348 349 350 351 352 353 354
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())
355
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
356

357 358 359
        param_dtype = (
            x.dtype if convert_dtype(x.dtype) != 'float16' else 'float32'
        )
姜永久 已提交
360
        mean_out = helper.create_variable_for_type_inference(
361
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
362 363
        )
        variance_out = helper.create_variable_for_type_inference(
364
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
365
        )
366
        layer_norm_out = helper.create_variable_for_type_inference(x.dtype)
姜永久 已提交
367 368 369 370 371 372 373 374 375 376

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
377
        )
378

姜永久 已提交
379
        return helper.append_activation(layer_norm_out)
380 381


382 383 384 385 386 387 388 389 390 391 392 393
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
394
    """
395
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
396 397 398

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
399 400
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
401
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
402
            If its value is None, this parameter will be initialized by one.
403
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
404
            If its value is None, this parameter will be initialized by zero.
405 406
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
407
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
408
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
409 410 411 412 413 414 415 416 417 418 419
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

420
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
421
          instance_norm_out = paddle.nn.functional.instance_norm(x)
422

Z
zhang wenhui 已提交
423
          print(instance_norm_out)
424 425

    """
426
    if in_dygraph_mode():
427
        out = _C_ops.instance_norm(x, weight, bias, eps)
428
        return out
姜永久 已提交
429 430
    else:
        check_variable_and_dtype(
431 432 433 434
            x,
            'input',
            ['float32', 'float64', 'float16', 'uint16'],
            "InstanceNorm",
435
        )
436

姜永久 已提交
437 438 439 440 441
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
442

姜永久 已提交
443 444 445 446
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
447

姜永久 已提交
448 449 450 451 452 453 454 455
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
456

姜永久 已提交
457 458 459 460 461
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
462

姜永久 已提交
463 464 465 466
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
467 468


469 470 471
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
472
    r"""
473 474
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
475

476
    The formula is as follows:
477

478
    .. math::
479

480 481 482 483 484 485 486 487 488 489 490
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
491
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float16 or float32.
492 493 494 495 496 497 498 499 500 501 502 503 504 505
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
506

507 508
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
509 510


511
    Examples:
512

513
    .. code-block:: python
514

515
        import paddle
516

517 518 519 520
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
521
    if not in_dynamic_mode():
522 523 524
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32'], 'local_response_norm'
        )
525 526
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
527 528 529
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
530 531 532 533 534

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
535 536 537 538
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
539

H
huangjun12 已提交
540
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
541
        if not sz > 0 and i > 0:
542 543 544 545
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
546

547 548
    channel_last = True if data_format[-1] == "C" else False

549
    from functools import reduce
550

551
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:], 1)
552

553 554 555 556
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
557
        reshape_shape = [
558 559 560 561 562
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
563
        ]
564 565 566 567 568
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
569
        reshape_shape = [
570 571 572 573 574
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
575
        ]
576 577 578 579 580
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
581 582 583
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
584 585 586
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
587 588 589 590 591 592
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
593 594 595 596 597 598
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res