norm.py 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18 19
import paddle
import paddle.fluid as fluid
姜永久 已提交
20 21
from paddle import _C_ops, in_dynamic_mode
from paddle.fluid.framework import in_dygraph_mode
22

23 24 25 26
from ...fluid import dygraph_utils
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

27 28
__all__ = []

29 30

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
31
    r"""
32
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
33 34 35

    .. math::

36
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
37

38
    .. math::
39
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
40

41
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
42 43


N
Noel 已提交
44
    Parameters:
45
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
46
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
47
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
48 49 50 51 52 53 54 55 56 57 58 59 60 61
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
62
            x = paddle.arange(6, dtype="float32").reshape([2,3])
63
            y = F.normalize(x)
64 65 66 67
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
68 69

            y = F.normalize(x, p=1.5)
70 71 72 73
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
74 75

            y = F.normalize(x, axis=0)
76 77 78 79
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
80
    """
81 82
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
83 84
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
85

姜永久 已提交
86 87 88 89 90
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
91
        )
姜永久 已提交
92 93 94 95 96
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
97
            )
98

姜永久 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
113 114


115 116 117 118 119 120 121 122 123 124 125 126 127
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
128 129 130
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
131
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
132

133 134 135 136 137
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
138
        bias(Tensor): The bias tensor of batch_norm can not be None.
139
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
140
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
141 142
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
143
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
144 145 146 147 148 149 150 151
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
177 178 179 180 181 182 183
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
184
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
185 186
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
187
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
188 189
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
190

F
Feiyu Chan 已提交
191
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
192

193
    if use_global_stats is None:
C
ceci3 已提交
194 195 196 197 198
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

199
    if in_dygraph_mode():
200
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
201 202 203
            x,
            running_mean,
            running_var,
204 205 206
            weight,
            bias,
            not training,
207 208 209 210 211 212 213 214 215 216
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )

        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=None
        )
217

姜永久 已提交
218 219 220
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
221
        )
222

姜永久 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())

        param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
248
        )
姜永久 已提交
249 250
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
251
        )
姜永久 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
268

姜永久 已提交
269 270
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
271
        )
272

姜永久 已提交
273
        return helper.append_activation(batch_norm_out)
274 275


276 277 278
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
279
    """
280 281
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
282

283 284 285 286 287 288 289 290
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
291 292 293
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
294 295 296 297 298 299 300 301 302 303

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

304
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
305
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
306
          print(layer_norm_out)
307 308 309
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
310 311 312 313 314 315
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
316 317
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
318

319 320
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
321 322 323 324
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
325
        str_normalized_shape = str(normalized_shape)
326 327 328 329 330 331 332 333
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
334

H
hong 已提交
335
    if in_dygraph_mode():
336 337
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
338

姜永久 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
        )

        inputs = dict()
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())

        dtype = x.dtype
        mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        layer_norm_out = helper.create_variable_for_type_inference(dtype)

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
373
        )
374

姜永久 已提交
375
        return helper.append_activation(layer_norm_out)
376 377


378 379 380 381 382 383 384 385 386 387 388 389
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
390
    """
391
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
392 393 394

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
395 396
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
397
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
398
            If its value is None, this parameter will be initialized by one.
399
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
400
            If its value is None, this parameter will be initialized by zero.
401 402
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
403
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
404
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
405 406 407 408 409 410 411 412 413 414 415
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

416
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
417
          instance_norm_out = paddle.nn.functional.instance_norm(x)
418

Z
zhang wenhui 已提交
419
          print(instance_norm_out)
420 421

    """
422
    if in_dygraph_mode():
423
        out = _C_ops.instance_norm(x, weight, bias, eps)
424
        return out
姜永久 已提交
425 426 427
    else:
        check_variable_and_dtype(
            x, 'input', ['float32', 'float64'], "InstanceNorm"
428
        )
429

姜永久 已提交
430 431 432 433 434
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
435

姜永久 已提交
436 437 438 439
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
440

姜永久 已提交
441 442 443 444 445 446 447 448
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
449

姜永久 已提交
450 451 452 453 454
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
455

姜永久 已提交
456 457 458 459
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
460 461


462 463 464
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
465
    r"""
466 467
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
468

469
    The formula is as follows:
470

471
    .. math::
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
499

500 501
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
502 503


504
    Examples:
505

506
    .. code-block:: python
507

508
        import paddle
509

510 511 512 513
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
514
    if not in_dynamic_mode():
515 516 517
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
518 519 520
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
521 522 523 524 525

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
526 527 528 529
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
530

H
huangjun12 已提交
531
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
532
        if not sz > 0 and i > 0:
533 534 535 536
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
537

538 539
    channel_last = True if data_format[-1] == "C" else False

540
    from functools import reduce
541

542 543
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

544 545 546 547
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
548
        reshape_shape = [
549 550 551 552 553
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
554
        ]
555 556 557 558 559
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
560
        reshape_shape = [
561 562 563 564 565
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
566
        ]
567 568 569 570 571
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
572 573 574
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
575 576 577
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
578 579 580 581 582 583
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
584 585 586 587 588 589
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res