norm.py 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18 19
import paddle
import paddle.fluid as fluid
姜永久 已提交
20 21
from paddle import _C_ops, in_dynamic_mode
from paddle.fluid.framework import in_dygraph_mode
22

23 24 25
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

26 27
__all__ = []

28 29

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
30
    r"""
31
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
32 33 34

    .. math::

35
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
36

37
    .. math::
38
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
39

40
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
41 42


N
Noel 已提交
43
    Parameters:
44
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
45
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
46
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
47 48 49 50 51 52 53 54 55 56 57 58 59 60
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
61
            x = paddle.arange(6, dtype="float32").reshape([2,3])
62
            y = F.normalize(x)
63 64 65 66
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
67 68

            y = F.normalize(x, p=1.5)
69 70 71 72
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
73 74

            y = F.normalize(x, axis=0)
75 76 77 78
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
79
    """
80 81
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
82 83
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
84

姜永久 已提交
85 86 87 88 89
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
90
        )
姜永久 已提交
91 92 93 94 95
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
96
            )
97

姜永久 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
112 113


114 115 116 117 118 119 120 121 122 123 124 125 126
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
127 128 129
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
130
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
131

132 133 134 135 136
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
137
        bias(Tensor): The bias tensor of batch_norm can not be None.
138
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
139
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
140 141
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
142
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
143 144 145 146 147 148 149 150
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
176 177 178 179 180 181 182
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
183
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
184 185
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
186
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
187 188
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
189

F
Feiyu Chan 已提交
190
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
191

192
    if use_global_stats is None:
C
ceci3 已提交
193 194 195 196 197
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

198
    if in_dygraph_mode():
199
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
200 201 202
            x,
            running_mean,
            running_var,
203 204 205
            weight,
            bias,
            not training,
206 207 208 209 210 211
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )
W
Weilong Wu 已提交
212
        return batch_norm_out
213

姜永久 已提交
214 215 216
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
217
        )
218

姜永久 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())

        param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
244
        )
姜永久 已提交
245 246
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
247
        )
姜永久 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
264

姜永久 已提交
265 266
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
267
        )
268

姜永久 已提交
269
        return helper.append_activation(batch_norm_out)
270 271


272 273 274
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
275
    """
276 277
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
278

279 280 281 282 283 284 285 286
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
287 288 289
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
290 291 292 293 294 295 296 297 298 299

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

300
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
301
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
302
          print(layer_norm_out)
303 304 305
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
306 307 308 309 310 311
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
312 313
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
314

315 316
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
317 318 319 320
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
321
        str_normalized_shape = str(normalized_shape)
322 323 324 325 326 327 328 329
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
330

H
hong 已提交
331
    if in_dygraph_mode():
332 333
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
334

姜永久 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
        )

        inputs = dict()
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())

        dtype = x.dtype
        mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        layer_norm_out = helper.create_variable_for_type_inference(dtype)

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
369
        )
370

姜永久 已提交
371
        return helper.append_activation(layer_norm_out)
372 373


374 375 376 377 378 379 380 381 382 383 384 385
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
386
    """
387
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
388 389 390

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
391 392
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
393
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
394
            If its value is None, this parameter will be initialized by one.
395
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
396
            If its value is None, this parameter will be initialized by zero.
397 398
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
399
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
400
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
401 402 403 404 405 406 407 408 409 410 411
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

412
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
413
          instance_norm_out = paddle.nn.functional.instance_norm(x)
414

Z
zhang wenhui 已提交
415
          print(instance_norm_out)
416 417

    """
418
    if in_dygraph_mode():
419
        out = _C_ops.instance_norm(x, weight, bias, eps)
420
        return out
姜永久 已提交
421 422 423
    else:
        check_variable_and_dtype(
            x, 'input', ['float32', 'float64'], "InstanceNorm"
424
        )
425

姜永久 已提交
426 427 428 429 430
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
431

姜永久 已提交
432 433 434 435
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
436

姜永久 已提交
437 438 439 440 441 442 443 444
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
445

姜永久 已提交
446 447 448 449 450
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
451

姜永久 已提交
452 453 454 455
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
456 457


458 459 460
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
461
    r"""
462 463
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
464

465
    The formula is as follows:
466

467
    .. math::
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
495

496 497
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
498 499


500
    Examples:
501

502
    .. code-block:: python
503

504
        import paddle
505

506 507 508 509
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
510
    if not in_dynamic_mode():
511 512 513
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
514 515 516
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
517 518 519 520 521

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
522 523 524 525
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
526

H
huangjun12 已提交
527
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
528
        if not sz > 0 and i > 0:
529 530 531 532
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
533

534 535
    channel_last = True if data_format[-1] == "C" else False

536
    from functools import reduce
537

538 539
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

540 541 542 543
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
544
        reshape_shape = [
545 546 547 548 549
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
550
        ]
551 552 553 554 555
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
556
        reshape_shape = [
557 558 559 560 561
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
562
        ]
563 564 565 566 567
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
568 569 570
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
571 572 573
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
574 575 576 577 578 579
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
580 581 582 583 584 585
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res