norm.py 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
姜永久 已提交
20
from paddle.fluid.framework import in_dygraph_mode
21

22 23 24
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

25 26
__all__ = []

27 28

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
29
    r"""
30
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
31 32 33

    .. math::

34
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
35

36
    .. math::
37
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
38

39
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
40 41


N
Noel 已提交
42
    Parameters:
43
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
44
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
45
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
46 47 48 49 50 51 52 53 54 55 56 57 58 59
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
60
            x = paddle.arange(6, dtype="float32").reshape([2,3])
61
            y = F.normalize(x)
62 63 64 65
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
66 67

            y = F.normalize(x, p=1.5)
68 69 70 71
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
72 73

            y = F.normalize(x, axis=0)
74 75 76 77
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
78
    """
79

80 81
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
82 83
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
84

姜永久 已提交
85 86 87 88 89
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
90
        )
姜永久 已提交
91 92 93 94 95
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
96
            )
97

姜永久 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
112 113


114 115 116 117 118 119 120 121 122 123 124 125 126
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
127 128 129
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
130
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
131

132 133 134 135 136
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
137
        bias(Tensor): The bias tensor of batch_norm can not be None.
138
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
139
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
140 141
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
142
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
143 144 145 146 147 148 149 150
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
176 177 178 179 180 181 182
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
183
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
184 185
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
186
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
187 188
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
189

F
Feiyu Chan 已提交
190
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
191

192
    if use_global_stats is None:
C
ceci3 已提交
193 194 195 196 197
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

198
    if in_dygraph_mode():
199
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
200 201 202
            x,
            running_mean,
            running_var,
203 204 205
            weight,
            bias,
            not training,
206 207 208 209 210 211
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )
W
Weilong Wu 已提交
212
        return batch_norm_out
213

姜永久 已提交
214 215 216
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
217
        )
218

姜永久 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())
240
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
241

242 243 244
        param_dtype = (
            x.dtype if convert_dtype(x.dtype) != 'float16' else 'float32'
        )
姜永久 已提交
245 246
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
247
        )
姜永久 已提交
248 249
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
250
        )
姜永久 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
267

姜永久 已提交
268 269
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
270
        )
271

姜永久 已提交
272
        return helper.append_activation(batch_norm_out)
273 274


275 276 277
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
278
    """
279 280
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
281

282 283 284 285 286 287 288 289
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
290 291 292
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
293 294 295 296 297 298 299 300 301 302

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

303
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
304
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
305
          print(layer_norm_out)
306 307 308
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
309 310 311 312 313 314
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
315 316
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
317

318 319
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
320 321 322 323
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
324
        str_normalized_shape = str(normalized_shape)
325 326 327 328 329 330 331 332
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
333

H
hong 已提交
334
    if in_dygraph_mode():
335 336
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
337

姜永久 已提交
338 339 340 341 342
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
        )

343
        inputs = {}
姜永久 已提交
344 345 346 347 348 349 350 351 352
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())
353
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
354

355 356 357
        param_dtype = (
            x.dtype if convert_dtype(x.dtype) != 'float16' else 'float32'
        )
姜永久 已提交
358
        mean_out = helper.create_variable_for_type_inference(
359
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
360 361
        )
        variance_out = helper.create_variable_for_type_inference(
362
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
363
        )
364
        layer_norm_out = helper.create_variable_for_type_inference(x.dtype)
姜永久 已提交
365 366 367 368 369 370 371 372 373 374

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
375
        )
376

姜永久 已提交
377
        return helper.append_activation(layer_norm_out)
378 379


380 381 382 383 384 385 386 387 388 389 390 391
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
392
    """
393
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
394 395 396

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
397 398
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
399
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
400
            If its value is None, this parameter will be initialized by one.
401
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
402
            If its value is None, this parameter will be initialized by zero.
403 404
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
405
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
406
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
407 408 409 410 411 412 413 414 415 416 417
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

418
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
419
          instance_norm_out = paddle.nn.functional.instance_norm(x)
420

Z
zhang wenhui 已提交
421
          print(instance_norm_out)
422 423

    """
424
    if in_dygraph_mode():
425
        out = _C_ops.instance_norm(x, weight, bias, eps)
426
        return out
姜永久 已提交
427 428
    else:
        check_variable_and_dtype(
429 430 431 432
            x,
            'input',
            ['float32', 'float64', 'float16', 'uint16'],
            "InstanceNorm",
433
        )
434

姜永久 已提交
435 436 437 438 439
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
440

姜永久 已提交
441 442 443 444
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
445

姜永久 已提交
446 447 448 449 450 451 452 453
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
454

姜永久 已提交
455 456 457 458 459
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
460

姜永久 已提交
461 462 463 464
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
465 466


467 468 469
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
470
    r"""
471 472
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
473

474
    The formula is as follows:
475

476
    .. math::
477

478 479 480 481 482 483 484 485 486 487 488
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
489
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float16 or float32.
490 491 492 493 494 495 496 497 498 499 500 501 502 503
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
504

505 506
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
507 508


509
    Examples:
510

511
    .. code-block:: python
512

513
        import paddle
514

515 516 517 518
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
519
    if not in_dynamic_mode():
520 521 522
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32'], 'local_response_norm'
        )
523 524
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
525 526 527
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
528 529 530 531 532

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
533 534 535 536
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
537

H
huangjun12 已提交
538
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
539
        if not sz > 0 and i > 0:
540 541 542 543
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
544

545 546
    channel_last = True if data_format[-1] == "C" else False

547
    from functools import reduce
548

549 550
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

551 552 553 554
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
555
        reshape_shape = [
556 557 558 559 560
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
561
        ]
562 563 564 565 566
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
567
        reshape_shape = [
568 569 570 571 572
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
573
        ]
574 575 576 577 578
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
579 580 581
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
582 583 584
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
585 586 587 588 589 590
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
591 592 593 594 595 596
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res