norm.py 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18 19
import paddle
import paddle.fluid as fluid
姜永久 已提交
20 21
from paddle import _C_ops, in_dynamic_mode
from paddle.fluid.framework import in_dygraph_mode
22

23 24 25
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

26 27
__all__ = []

28 29

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
30
    r"""
31
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
32 33 34

    .. math::

35
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
36

37
    .. math::
38
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
39

40
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
41 42


N
Noel 已提交
43
    Parameters:
44
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
45
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
46
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
47 48 49 50 51 52 53 54 55 56 57 58 59 60
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
61
            x = paddle.arange(6, dtype="float32").reshape([2,3])
62
            y = F.normalize(x)
63 64 65 66
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
67 68

            y = F.normalize(x, p=1.5)
69 70 71 72
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
73 74

            y = F.normalize(x, axis=0)
75 76 77 78
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
79
    """
80

81 82
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
83 84
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
85

姜永久 已提交
86 87 88 89 90
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
91
        )
姜永久 已提交
92 93 94 95 96
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
97
            )
98

姜永久 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
113 114


115 116 117 118 119 120 121 122 123 124 125 126 127
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
128 129 130
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
131
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
132

133 134 135 136 137
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
138
        bias(Tensor): The bias tensor of batch_norm can not be None.
139
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
140
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
141 142
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
143
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
144 145 146 147 148 149 150 151
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
177 178 179 180 181 182 183
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
184
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
185 186
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
187
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
188 189
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
190

F
Feiyu Chan 已提交
191
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
192

193
    if use_global_stats is None:
C
ceci3 已提交
194 195 196 197 198
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

199
    if in_dygraph_mode():
200
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
201 202 203
            x,
            running_mean,
            running_var,
204 205 206
            weight,
            bias,
            not training,
207 208 209 210 211 212
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )
W
Weilong Wu 已提交
213
        return batch_norm_out
214

姜永久 已提交
215 216 217
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
218
        )
219

姜永久 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())
241
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
242

243 244 245
        param_dtype = (
            x.dtype if convert_dtype(x.dtype) != 'float16' else 'float32'
        )
姜永久 已提交
246 247
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
248
        )
姜永久 已提交
249 250
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
251
        )
姜永久 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
268

姜永久 已提交
269 270
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
271
        )
272

姜永久 已提交
273
        return helper.append_activation(batch_norm_out)
274 275


276 277 278
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
279
    """
280 281
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
282

283 284 285 286 287 288 289 290
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
291 292 293
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
294 295 296 297 298 299 300 301 302 303

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

304
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
305
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
306
          print(layer_norm_out)
307 308 309
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
310 311 312 313 314 315
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
316 317
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
318

319 320
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
321 322 323 324
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
325
        str_normalized_shape = str(normalized_shape)
326 327 328 329 330 331 332 333
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
334

H
hong 已提交
335
    if in_dygraph_mode():
336 337
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
338

姜永久 已提交
339 340 341 342 343
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
        )

344
        inputs = {}
姜永久 已提交
345 346 347 348 349 350 351 352 353
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())
354
        from paddle.fluid.data_feeder import convert_dtype
姜永久 已提交
355

356 357 358
        param_dtype = (
            x.dtype if convert_dtype(x.dtype) != 'float16' else 'float32'
        )
姜永久 已提交
359
        mean_out = helper.create_variable_for_type_inference(
360
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
361 362
        )
        variance_out = helper.create_variable_for_type_inference(
363
            dtype=param_dtype, stop_gradient=True
姜永久 已提交
364
        )
365
        layer_norm_out = helper.create_variable_for_type_inference(x.dtype)
姜永久 已提交
366 367 368 369 370 371 372 373 374 375

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
376
        )
377

姜永久 已提交
378
        return helper.append_activation(layer_norm_out)
379 380


381 382 383 384 385 386 387 388 389 390 391 392
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
393
    """
394
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
395 396 397

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
398 399
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
400
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
401
            If its value is None, this parameter will be initialized by one.
402
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
403
            If its value is None, this parameter will be initialized by zero.
404 405
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
406
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
407
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
408 409 410 411 412 413 414 415 416 417 418
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

419
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
420
          instance_norm_out = paddle.nn.functional.instance_norm(x)
421

Z
zhang wenhui 已提交
422
          print(instance_norm_out)
423 424

    """
425
    if in_dygraph_mode():
426
        out = _C_ops.instance_norm(x, weight, bias, eps)
427
        return out
姜永久 已提交
428 429 430
    else:
        check_variable_and_dtype(
            x, 'input', ['float32', 'float64'], "InstanceNorm"
431
        )
432

姜永久 已提交
433 434 435 436 437
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
438

姜永久 已提交
439 440 441 442
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
443

姜永久 已提交
444 445 446 447 448 449 450 451
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
452

姜永久 已提交
453 454 455 456 457
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
458

姜永久 已提交
459 460 461 462
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
463 464


465 466 467
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
468
    r"""
469 470
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
471

472
    The formula is as follows:
473

474
    .. math::
475

476 477 478 479 480 481 482 483 484 485 486
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
487
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float16 or float32.
488 489 490 491 492 493 494 495 496 497 498 499 500 501
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
502

503 504
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
505 506


507
    Examples:
508

509
    .. code-block:: python
510

511
        import paddle
512

513 514 515 516
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
517
    if not in_dynamic_mode():
518 519 520
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32'], 'local_response_norm'
        )
521 522
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
523 524 525
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
526 527 528 529 530

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
531 532 533 534
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
535

H
huangjun12 已提交
536
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
537
        if not sz > 0 and i > 0:
538 539 540 541
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
542

543 544
    channel_last = True if data_format[-1] == "C" else False

545
    from functools import reduce
546

547 548
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

549 550 551 552
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
553
        reshape_shape = [
554 555 556 557 558
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
559
        ]
560 561 562 563 564
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
565
        reshape_shape = [
566 567 568 569 570
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
571
        ]
572 573 574 575 576
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
577 578 579
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
580 581 582
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
583 584 585 586 587 588
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
589 590 591 592 593 594
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res