norm.py 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define normalization api
16 17 18 19
import paddle
import paddle.fluid as fluid
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper
Z
zhiboniu 已提交
20
from ...fluid import dygraph_utils
21
import numbers
22
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
23
from paddle import in_dynamic_mode
24
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
25

26 27
__all__ = []

28 29

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
30
    r"""
31
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
32 33 34

    .. math::

35
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
36

37
    .. math::
38
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
39

40
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
41 42


N
Noel 已提交
43
    Parameters:
44
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
45
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
46
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
            x = np.arange(6, dtype=np.float32).reshape(2,3)
63
            x = paddle.to_tensor(x)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
            y = F.normalize(x)
            print(y.numpy())
            # [[0.         0.4472136  0.8944272 ]
            # [0.42426404 0.5656854  0.7071067 ]]

            y = F.normalize(x, p=1.5)
            print(y.numpy())
            # [[0.         0.40862012 0.81724024]
            # [0.35684016 0.4757869  0.5947336 ]]

            y = F.normalize(x, axis=0)
            print(y.numpy())
            # [[0.         0.24253564 0.37139067]
            # [1.         0.97014254 0.9284767 ]]
    """
79 80
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
81 82
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
83 84

    if _in_legacy_dygraph():
85
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
86 87 88
        out = _legacy_C_ops.p_norm(x, 'axis', axis, 'porder', float(p),
                                   'keepdim', True, 'epsilon', epsilon)
        return x / _legacy_C_ops.elementwise_max(out, eps)
89 90 91

    check_type(p, 'p', (float, int), 'normalize')
    check_type(axis, 'axis', (int), 'normalize')
G
Guoxia Wang 已提交
92 93
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'normalize')
94 95
    if len(x.shape) == 1 and axis != 0 and axis != -1:
        raise ValueError(
96 97
            "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}"
            .format(axis))
98 99 100 101 102 103 104 105 106

    attrs = {
        'axis': axis,
        'porder': float(p),
        'keepdim': True,
        'epsilon': epsilon,
    }
    helper = LayerHelper('p_norm', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
107 108 109 110
    helper.append_op(type='p_norm',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs=attrs)
111
    eps = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
112
    eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
113
    return paddle.divide(x, paddle.maximum(out, eps), name=name)
114 115 116 117 118 119 120 121 122 123 124


def batch_norm(x,
               running_mean,
               running_var,
               weight,
               bias,
               training=False,
               momentum=0.9,
               epsilon=1e-05,
               data_format="NCHW",
C
ceci3 已提交
125
               use_global_stats=None,
126 127 128 129
               name=None):
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
130
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
131

132 133 134 135 136
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
137
        bias(Tensor): The bias tensor of batch_norm can not be None.
138 139
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
140 141
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default "NCHW".
C
ceci3 已提交
142
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          x = np.random.seed(123)
          x = np.random.random(size=(2, 1, 2, 3)).astype('float32')
          running_mean = np.random.random(size=1).astype('float32')
          running_variance = np.random.random(size=1).astype('float32')
          weight_data = np.random.random(size=1).astype('float32')
          bias_data = np.random.random(size=1).astype('float32')
          x = paddle.to_tensor(x)
          rm = paddle.to_tensor(running_mean)
          rv = paddle.to_tensor(running_variance)
          w = paddle.to_tensor(weight_data)
          b = paddle.to_tensor(bias_data)
          batch_norm_out = paddle.nn.functional.batch_norm(x, rm, rv, w, b)
Z
zhang wenhui 已提交
166
          print(batch_norm_out)
167 168 169 170 171 172 173
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
174
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
175 176
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
177 178
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))
179

F
Feiyu Chan 已提交
180
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
181

C
ceci3 已提交
182 183 184 185 186 187
    if use_global_stats == None:
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

188
    if in_dygraph_mode():
189
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
190 191 192 193
            x, weight, bias, running_mean, running_var, momentum, epsilon,
            data_format, not training, use_global_stats, trainable_statistics,
            False)

194 195
        return dygraph_utils._append_activation_in_dygraph(batch_norm_out,
                                                           act=None)
196 197 198 199 200 201 202 203

    elif _in_legacy_dygraph():
        # for dygraph need tuple
        attrs = ("momentum", momentum, "epsilon", epsilon, "is_test",
                 not training, "data_layout", data_format, "use_mkldnn", False,
                 "fuse_with_relu", False, "use_global_stats", use_global_stats,
                 "trainable_statistics", trainable_statistics)

204
        batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
205 206
            x, weight, bias, running_mean, running_var, None, mean_out,
            variance_out, *attrs)
H
hong 已提交
207

208 209
        return dygraph_utils._append_activation_in_dygraph(batch_norm_out,
                                                           act=None)
210 211 212 213 214 215 216 217

    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'BatchNorm')

    # for static need dict
    attrs = {
        "momentum": momentum,
        "epsilon": epsilon,
218
        "is_test": not training,
219 220 221 222
        "data_layout": data_format,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
C
ceci3 已提交
223
        "trainable_statistics": trainable_statistics,
224 225 226 227 228 229 230 231 232 233 234 235
    }

    inputs = {
        "X": [x],
        "Scale": [weight],
        "Bias": [bias],
        "Mean": [running_mean],
        "Variance": [running_var]
    }

    helper = LayerHelper('batch_norm', **locals())

236
    param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
237 238
    saved_mean = helper.create_variable_for_type_inference(dtype=param_dtype,
                                                           stop_gradient=True)
239
    saved_variance = helper.create_variable_for_type_inference(
240 241
        dtype=param_dtype, stop_gradient=True)
    batch_norm_out = helper.create_variable_for_type_inference(x.dtype)
242 243 244 245 246 247

    outputs = {
        "Y": [batch_norm_out],
        "MeanOut": [running_mean],
        "VarianceOut": [running_var],
        "SavedMean": [saved_mean],
248
        "SavedVariance": [saved_variance]
249 250
    }

251 252 253 254 255 256
    if training or trainable_statistics:
        # reserve_space is only used for training.
        reserve_space = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True)
        outputs["ReserveSpace"] = [reserve_space]

257 258 259 260
    helper.append_op(type="batch_norm",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
261 262 263 264 265 266 267 268 269 270 271 272

    return helper.append_activation(batch_norm_out)


def layer_norm(x,
               normalized_shape,
               weight=None,
               bias=None,
               epsilon=1e-05,
               name=None):
    """
    see more detail in paddle.nn.LayerNorm
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

295
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
296
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
297
          print(layer_norm_out)
298 299 300
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
301 302 303 304 305 306 307 308
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
            "`normalized_shape` should be int, list of ints or tuple of ints.")

309 310 311 312 313 314 315
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
    if input_ndim < normalized_ndim or input_shape[
            begin_norm_axis:] != normalized_shape:
        str_normalized_shape = str(normalized_shape)
        raise ValueError('Given normalized_shape is ' + str_normalized_shape +
                         ', expected input with shape [*, ' +
316 317
                         str_normalized_shape[1:] + ', but got input shape ' +
                         str(input_shape))
318

H
hong 已提交
319
    if in_dygraph_mode():
320 321
        pre_act, _, _, = _C_ops.layer_norm(x, weight, bias, epsilon,
                                           begin_norm_axis, False)
H
hong 已提交
322 323 324 325

        return dygraph_utils._append_activation_in_dygraph(pre_act, act=None)

    if _in_legacy_dygraph():
326 327 328
        pre_act, _, _ = _legacy_C_ops.layer_norm(x, weight, bias, 'epsilon',
                                                 epsilon, 'begin_norm_axis',
                                                 begin_norm_axis)
329 330
        return dygraph_utils._append_activation_in_dygraph(pre_act, act=None)

F
furnace 已提交
331 332
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'LayerNorm')
333 334 335 336 337 338 339 340 341 342 343

    inputs = dict()
    inputs['X'] = [x]
    if weight:
        inputs['Scale'] = [weight]
    if bias:
        inputs['Bias'] = [bias]
    attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

    # create output
    helper = LayerHelper('layer_norm', **locals())
F
furnace 已提交
344 345

    dtype = x.dtype
346 347 348 349
    mean_out = helper.create_variable_for_type_inference(dtype=dtype,
                                                         stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(dtype=dtype,
                                                             stop_gradient=True)
F
furnace 已提交
350
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
351

352 353 354 355 356 357 358 359 360 361 362
    helper.append_op(type="layer_norm",
                     inputs=inputs,
                     outputs={
                         "Y": layer_norm_out,
                         "Mean": mean_out,
                         "Variance": variance_out,
                     },
                     attrs={
                         "epsilon": epsilon,
                         "begin_norm_axis": begin_norm_axis
                     })
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

    return helper.append_activation(layer_norm_out)


def instance_norm(x,
                  running_mean=None,
                  running_var=None,
                  weight=None,
                  bias=None,
                  use_input_stats=True,
                  momentum=0.9,
                  eps=1e-05,
                  data_format="NCHW",
                  name=None):
    """
C
cnn 已提交
378
    See more detail in nn.layer.InstanceNorm2D.
379 380 381

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
382 383
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
384
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
385
            If its value is None, this parameter will be initialized by one.
386
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
387
            If its value is None, this parameter will be initialized by zero.
388 389
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
390
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
391
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
392 393 394 395 396 397 398 399 400 401 402
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

403
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
404
          instance_norm_out = paddle.nn.functional.instance_norm(x)
405

Z
zhang wenhui 已提交
406
          print(instance_norm_out)
407 408

    """
409
    if in_dygraph_mode():
410
        out = _C_ops.instance_norm(x, weight, bias, eps)
411 412
        return out
    if _in_legacy_dygraph():
413 414 415
        out, _, _ = _legacy_C_ops.instance_norm(x, weight, bias, "epsilon", eps,
                                                "momentum", momentum,
                                                "data_format", data_format)
416 417 418 419 420 421 422 423 424 425 426 427
        return out

    check_variable_and_dtype(x, 'input', ['float32', 'float64'], "InstanceNorm")

    attrs = {"epsilon": eps, "momentum": momentum, "data_format": data_format}

    if weight and bias:
        inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
    else:
        inputs = {"X": [x]}

    helper = LayerHelper('instance_norm', **locals())
428 429
    saved_mean = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                           stop_gradient=True)
430 431 432 433 434 435 436 437 438 439
    saved_variance = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    instance_norm_out = helper.create_variable_for_type_inference(x.dtype)

    outputs = {
        "Y": [instance_norm_out],
        "SavedMean": [saved_mean],
        "SavedVariance": [saved_variance]
    }

440 441 442 443
    helper.append_op(type="instance_norm",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
444
    return instance_norm_out
445 446 447 448 449 450 451 452 453


def local_response_norm(x,
                        size,
                        alpha=1e-4,
                        beta=0.75,
                        k=1.,
                        data_format="NCHW",
                        name=None):
454
    r"""
455 456 457 458 459 460 461
        Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
        For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

        The formula is as follows:

        .. math::

462
            Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

        In the above equation:

        - :math:`size` : The number of channels to sum over.
        - :math:`k` : The offset (avoid being divided by 0).
        - :math:`\\alpha` : The scaling parameter.
        - :math:`\\beta` : The exponent parameter.


        Args:
            x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
            size (int): The number of channels to sum over.
            alpha (float, optional): The scaling parameter, positive. Default:1e-4
            beta (float, optional): The exponent, positive. Default:0.75
            k (float, optional): An offset, positive. Default: 1.0
            data_format (str, optional): Specify the data format of the input, and the data format of the output
                will be consistent with that of the input. An optional string from:
                If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
                the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
                If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
                If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
            name (str, optional): Name for the operation (optional, default is None). For more information,
                please refer to :ref:`api_guide_Name`.

        Returns:
            A tensor storing the transformation result with the same shape and data type as input.


        Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
            y = paddle.nn.functional.local_response_norm(x, size=5)
            print(y.shape)  # [3, 3, 112, 112]
        """
Z
zhiboniu 已提交
503
    if not in_dynamic_mode():
504 505 506 507 508 509 510 511 512 513 514 515 516
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
            "but got {}".format(data_format))

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
            'Expected 3D or higher dimensionality input, but got {} dimensions'.
            format(dim))

H
huangjun12 已提交
517
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
518
        if not sz > 0 and i > 0:
H
huangjun12 已提交
519
            raise ValueError("Expected every dim's size to be larger than 0, "
520 521
                             "but the size of the {}-th dim is {}".format(
                                 i, sz))
H
huangjun12 已提交
522

523 524
    channel_last = True if data_format[-1] == "C" else False

525 526 527
    from functools import reduce
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

528 529 530 531
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
532 533 534 535
        reshape_shape = [
            sizes[0], 1, sizes[1], sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2]))
        ]
536 537 538 539 540
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
541
        reshape_shape = [
542 543
            sizes[0], 1, sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])), sizes[-1]
544
        ]
545 546 547 548 549
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
550 551 552
        div = paddle.nn.functional.avg_pool2d(div,
                                              kernel_size=pool2d_shape,
                                              stride=1)
553 554 555 556 557 558
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
        div = paddle.nn.functional.pad(div,
                                       pad=pad5d_shape,
                                       data_format='NCDHW')
559 560 561
        div = paddle.nn.functional.avg_pool3d(div,
                                              kernel_size=pool3d_shape,
                                              stride=1)
562 563 564 565 566 567
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res