norm.py 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18 19
import paddle
import paddle.fluid as fluid
姜永久 已提交
20 21
from paddle import _C_ops, in_dynamic_mode
from paddle.fluid.framework import in_dygraph_mode
22

23 24 25
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

26 27
__all__ = []

28 29

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
30
    r"""
31
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
32 33 34

    .. math::

35
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
36

37
    .. math::
38
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
39

40
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
41 42


N
Noel 已提交
43
    Parameters:
44
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
45
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
46
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
47 48 49 50 51 52 53 54 55 56 57 58 59 60
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
61
            x = paddle.arange(6, dtype="float32").reshape([2,3])
62
            y = F.normalize(x)
63 64 65 66
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
67 68

            y = F.normalize(x, p=1.5)
69 70 71 72
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
73 74

            y = F.normalize(x, axis=0)
75 76 77 78
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
79
    """
80

81 82
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
83 84
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
85

姜永久 已提交
86 87 88 89 90
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
91
        )
姜永久 已提交
92 93 94 95 96
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
97
            )
98

姜永久 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
113 114


115 116 117 118 119 120 121 122 123 124 125 126 127
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
128 129 130
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
131
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
132

133 134 135 136 137
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
138
        bias(Tensor): The bias tensor of batch_norm can not be None.
139
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
140
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
141 142
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
143
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
144 145 146 147 148 149 150 151
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
177 178 179 180 181 182 183
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
184
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
185 186
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
187
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
188 189
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
190

F
Feiyu Chan 已提交
191
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
192

193
    if use_global_stats is None:
C
ceci3 已提交
194 195 196 197 198
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

199
    if in_dygraph_mode():
200
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
201 202 203
            x,
            running_mean,
            running_var,
204 205 206
            weight,
            bias,
            not training,
207 208 209 210 211 212
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )
W
Weilong Wu 已提交
213
        return batch_norm_out
214

姜永久 已提交
215 216 217
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
218
        )
219

姜永久 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())

        param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
245
        )
姜永久 已提交
246 247
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
248
        )
姜永久 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
265

姜永久 已提交
266 267
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
268
        )
269

姜永久 已提交
270
        return helper.append_activation(batch_norm_out)
271 272


273 274 275
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
276
    """
277 278
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
279

280 281 282 283 284 285 286 287
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
288 289 290
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
291 292 293 294 295 296 297 298 299 300

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

301
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
302
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
303
          print(layer_norm_out)
304 305 306
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
307 308 309 310 311 312
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
313 314
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
315

316 317
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
318 319 320 321
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
322
        str_normalized_shape = str(normalized_shape)
323 324 325 326 327 328 329 330
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
331

H
hong 已提交
332
    if in_dygraph_mode():
333 334
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
335

姜永久 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
        )

        inputs = dict()
        inputs['X'] = [x]
        if weight:
            inputs['Scale'] = [weight]
        if bias:
            inputs['Bias'] = [bias]
        attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

        # create output
        helper = LayerHelper('layer_norm', **locals())

        dtype = x.dtype
        mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True
        )
        layer_norm_out = helper.create_variable_for_type_inference(dtype)

        helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
370
        )
371

姜永久 已提交
372
        return helper.append_activation(layer_norm_out)
373 374


375 376 377 378 379 380 381 382 383 384 385 386
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
387
    """
388
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
389 390 391

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
392 393
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
394
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
395
            If its value is None, this parameter will be initialized by one.
396
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
397
            If its value is None, this parameter will be initialized by zero.
398 399
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
400
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
401
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
402 403 404 405 406 407 408 409 410 411 412
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

413
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
414
          instance_norm_out = paddle.nn.functional.instance_norm(x)
415

Z
zhang wenhui 已提交
416
          print(instance_norm_out)
417 418

    """
419
    if in_dygraph_mode():
420
        out = _C_ops.instance_norm(x, weight, bias, eps)
421
        return out
姜永久 已提交
422 423 424
    else:
        check_variable_and_dtype(
            x, 'input', ['float32', 'float64'], "InstanceNorm"
425
        )
426

姜永久 已提交
427 428 429 430 431
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
432

姜永久 已提交
433 434 435 436
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
437

姜永久 已提交
438 439 440 441 442 443 444 445
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
446

姜永久 已提交
447 448 449 450 451
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
452

姜永久 已提交
453 454 455 456
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
457 458


459 460 461
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
462
    r"""
463 464
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
465

466
    The formula is as follows:
467

468
    .. math::
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
496

497 498
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
499 500


501
    Examples:
502

503
    .. code-block:: python
504

505
        import paddle
506

507 508 509 510
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
511
    if not in_dynamic_mode():
512 513 514
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
515 516 517
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
518 519 520 521 522

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
523 524 525 526
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
527

H
huangjun12 已提交
528
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
529
        if not sz > 0 and i > 0:
530 531 532 533
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
534

535 536
    channel_last = True if data_format[-1] == "C" else False

537
    from functools import reduce
538

539 540
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

541 542 543 544
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
545
        reshape_shape = [
546 547 548 549 550
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
551
        ]
552 553 554 555 556
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
557
        reshape_shape = [
558 559 560 561 562
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
563
        ]
564 565 566 567 568
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
569 570 571
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
572 573 574
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
575 576 577 578 579 580
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
581 582 583 584 585 586
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res