norm.py 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numbers

17
# TODO: define normalization api
18 19
import paddle
import paddle.fluid as fluid
20
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
21
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
22

23 24 25 26
from ...fluid import dygraph_utils
from ...fluid.data_feeder import check_type, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper

27 28
__all__ = []

29 30

def normalize(x, p=2, axis=1, epsilon=1e-12, name=None):
31
    r"""
32
    Normalize ``x`` along dimension ``axis`` using :math:`L_p` norm. This layer computes
33 34 35

    .. math::

36
        y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }
37

38
    .. math::
39
        \lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p}  \right)^{1/p}
40

41
    where, :math:`\sum_i{\lvert x_i \rvert^p}` is calculated along the ``axis`` dimension.
42 43


N
Noel 已提交
44
    Parameters:
45
        x (Tensor): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
46
        p (float|int, optional): The exponent value in the norm formulation. Default: 2.
47
        axis (int, optional): The axis on which to apply normalization. If `axis < 0`, the dimension to normalization is `x.ndim + axis`. -1 is the last dimension.
48 49 50 51 52 53 54 55 56 57 58 59 60 61
        epsilon (float, optional): Small float added to denominator to avoid dividing by zero. Default is 1e-12.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output has the same shape and data type with ``x``.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.disable_static()
62
            x = paddle.arange(6, dtype="float32").reshape([2,3])
63
            y = F.normalize(x)
64 65 66 67
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.44721359, 0.89442718],
            #         [0.42426404, 0.56568539, 0.70710671]])
68 69

            y = F.normalize(x, p=1.5)
70 71 72 73
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.40862012, 0.81724024],
            #         [0.35684016, 0.47578689, 0.59473360]])
74 75

            y = F.normalize(x, axis=0)
76 77 78 79
            print(y)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.        , 0.24253564, 0.37139067],
            #         [1.        , 0.97014254, 0.92847669]])
80
    """
81 82
    if in_dygraph_mode():
        eps = fluid.dygraph.base.to_variable([epsilon], dtype=x.dtype)
83 84
        out = _C_ops.p_norm(x, float(p), axis, epsilon, True, False)
        return x / _C_ops.maximum(out, eps)
85

姜永久 已提交
86 87 88 89 90
    else:
        check_type(p, 'p', (float, int), 'normalize')
        check_type(axis, 'axis', (int), 'normalize')
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'normalize'
91
        )
姜永久 已提交
92 93 94 95 96
        if len(x.shape) == 1 and axis != 0 and axis != -1:
            raise ValueError(
                "Axis must be 0 or -1 when x is a 1-D tensor, but received axis = {}".format(
                    axis
                )
97
            )
98

姜永久 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
        attrs = {
            'axis': axis,
            'porder': float(p),
            'keepdim': True,
            'epsilon': epsilon,
        }
        helper = LayerHelper('p_norm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='p_norm', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
        )
        eps = out.block.create_var(dtype=out.dtype)
        eps = paddle.full(shape=[1], fill_value=epsilon, dtype=out.dtype)
        return paddle.divide(x, paddle.maximum(out, eps), name=name)
113 114


115 116 117 118 119 120 121 122 123 124 125 126 127
def batch_norm(
    x,
    running_mean,
    running_var,
    weight,
    bias,
    training=False,
    momentum=0.9,
    epsilon=1e-05,
    data_format="NCHW",
    use_global_stats=None,
    name=None,
):
128 129 130
    """
    Applies Batch Normalization as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
cnn 已提交
131
    nn.functional.batch_norm is uesd for nn.BatchNorm1D, nn.BatchNorm2D, nn.BatchNorm3D. Please use above API for BatchNorm.
132

133 134 135 136 137
    Parameters:
        x(Tesnor): input value. It's data type should be float32, float64.
        running_mean(Tensor): running mean.
        running_var(Tensor): running variance.
        weight(Tensor): The weight tensor of batch_norm, can not be None.
138
        bias(Tensor): The bias tensor of batch_norm can not be None.
139
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
140
        training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Default False.
学渣戊's avatar
学渣戊 已提交
141 142
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC", where `N` is batch size, `C` is the number of the feature map, `D` is the depth of the feature, `H` is the height of the feature map, `W` is the width of the feature map, `L` is the length of the feature map. Default "NCHW".
C
ceci3 已提交
143
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
144 145 146 147 148 149 150 151
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None

    Examples:
        .. code-block:: python

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            import paddle

            x = paddle.arange(12, dtype="float32").reshape([2, 1, 2, 3])
            print(x)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0. , 1. , 2. ],
            #           [3. , 4. , 5. ]]],

            #         [[[6. , 7. , 8. ],
            #           [9. , 10., 11.]]]])

            running_mean = paddle.to_tensor([0], dtype="float32")
            running_variance = paddle.to_tensor([1], dtype="float32")
            weight = paddle.to_tensor([2], dtype="float32")
            bias = paddle.to_tensor([1], dtype="float32")

            batch_norm_out = paddle.nn.functional.batch_norm(x, running_mean,
                                                        running_variance, weight, bias)
            print(batch_norm_out)
            # Tensor(shape=[2, 1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[1.         , 2.99998999 , 4.99997997 ],
            #           [6.99996948 , 8.99995995 , 10.99994946]]],

            #         [[[12.99993896, 14.99992943, 16.99991989],
            #           [18.99990845, 20.99989891, 22.99988937]]]])
177 178 179 180 181 182 183
    """
    assert len(x.shape) >= 2, "input dim must be larger than 1"

    # input ad out must share the memory
    mean_out = running_mean
    variance_out = running_var

F
Feiyu Chan 已提交
184
    true_data_format = ['NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC']
185 186
    if data_format not in true_data_format:
        raise ValueError(
F
Feiyu Chan 已提交
187
            "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
188 189
            "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
        )
190

F
Feiyu Chan 已提交
191
    data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'
192

193
    if use_global_stats is None:
C
ceci3 已提交
194 195 196 197 198
        use_global_stats = not training
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

199
    if in_dygraph_mode():
200
        batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
201 202 203
            x,
            running_mean,
            running_var,
204 205 206
            weight,
            bias,
            not training,
207 208 209 210 211 212 213 214 215 216
            momentum,
            epsilon,
            data_format,
            use_global_stats,
            trainable_statistics,
        )

        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=None
        )
217

姜永久 已提交
218 219 220
    else:
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
221
        )
222

姜永久 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        # for static need dict
        attrs = {
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": not training,
            "data_layout": data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [x],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [running_mean],
            "Variance": [running_var],
        }

        helper = LayerHelper('batch_norm', **locals())

        param_dtype = x.dtype if x.dtype != 'float16' else 'float32'
        saved_mean = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
248
        )
姜永久 已提交
249 250
        saved_variance = helper.create_variable_for_type_inference(
            dtype=param_dtype, stop_gradient=True
251
        )
姜永久 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        batch_norm_out = helper.create_variable_for_type_inference(x.dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [running_mean],
            "VarianceOut": [running_var],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }

        if training or trainable_statistics:
            # reserve_space is only used for training.
            reserve_space = helper.create_variable_for_type_inference(
                dtype=x.dtype, stop_gradient=True
            )
            outputs["ReserveSpace"] = [reserve_space]
268

姜永久 已提交
269 270
        helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
271
        )
272

姜永久 已提交
273
        return helper.append_activation(batch_norm_out)
274 275


276 277 278
def layer_norm(
    x, normalized_shape, weight=None, bias=None, epsilon=1e-05, name=None
):
279
    """
280 281
    nn.LayerNorm is recommended.
    For more information, please refer to :ref:`api_paddle_nn_LayerNorm` .
282

283 284 285 286 287 288 289 290
    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
        bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
291 292 293
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name` .
294 295 296 297 298 299 300 301 302 303

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

304
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
305
          layer_norm_out = paddle.nn.functional.layer_norm(x, x.shape[1:])
Z
zhang wenhui 已提交
306
          print(layer_norm_out)
307 308 309
    """
    input_shape = list(x.shape)
    input_ndim = len(input_shape)
310 311 312 313 314 315
    if isinstance(normalized_shape, numbers.Integral):
        normalized_shape = [normalized_shape]
    elif isinstance(normalized_shape, tuple):
        normalized_shape = list(normalized_shape)
    elif not isinstance(normalized_shape, list):
        raise ValueError(
316 317
            "`normalized_shape` should be int, list of ints or tuple of ints."
        )
318

319 320
    normalized_ndim = len(normalized_shape)
    begin_norm_axis = input_ndim - normalized_ndim
321 322 323 324
    if (
        input_ndim < normalized_ndim
        or input_shape[begin_norm_axis:] != normalized_shape
    ):
325
        str_normalized_shape = str(normalized_shape)
326 327 328 329 330 331 332 333
        raise ValueError(
            'Given normalized_shape is '
            + str_normalized_shape
            + ', expected input with shape [*, '
            + str_normalized_shape[1:]
            + ', but got input shape '
            + str(input_shape)
        )
334

H
hong 已提交
335
    if in_dygraph_mode():
336 337
        out, _, _ = _C_ops.layer_norm(x, weight, bias, epsilon, begin_norm_axis)
        return out
H
hong 已提交
338 339

    if _in_legacy_dygraph():
340
        out, _, _ = _legacy_C_ops.layer_norm(
341 342 343 344 345 346 347 348
            x,
            weight,
            bias,
            'epsilon',
            epsilon,
            'begin_norm_axis',
            begin_norm_axis,
        )
349
        return out
350

351 352 353
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], 'LayerNorm'
    )
354 355 356 357 358 359 360 361 362 363 364

    inputs = dict()
    inputs['X'] = [x]
    if weight:
        inputs['Scale'] = [weight]
    if bias:
        inputs['Bias'] = [bias]
    attrs = {"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}

    # create output
    helper = LayerHelper('layer_norm', **locals())
F
furnace 已提交
365 366

    dtype = x.dtype
367 368 369 370 371 372
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
F
furnace 已提交
373
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
374

375 376 377 378 379 380 381 382 383 384
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
385 386 387 388

    return helper.append_activation(layer_norm_out)


389 390 391 392 393 394 395 396 397 398 399 400
def instance_norm(
    x,
    running_mean=None,
    running_var=None,
    weight=None,
    bias=None,
    use_input_stats=True,
    momentum=0.9,
    eps=1e-05,
    data_format="NCHW",
    name=None,
):
401
    """
402
    It is recommended to use :ref:`api_paddle_nn_InstanceNorm1D` , :ref:`api_paddle_nn_InstanceNorm2D` , :ref:`api_paddle_nn_InstanceNorm3D` to call this method internally.
403 404 405

    Parameters:
        x(Tensor): Input Tensor. It's data type should be float32, float64.
D
duanboqiang 已提交
406 407
        running_mean(Tensor, optional): running mean. Default None. Obsolete (that is, no longer usable).
        running_var(Tensor, optional): running variance. Default None. Obsolete (that is, no longer usable).
408
        weight(Tensor, optional): The weight tensor of instance_norm. Default: None.
D
duanboqiang 已提交
409
            If its value is None, this parameter will be initialized by one.
410
        bias(Tensor, optional): The bias tensor of instance_norm. Default: None.
D
duanboqiang 已提交
411
            If its value is None, this parameter will be initialized by zero.
412 413
        eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
D
duanboqiang 已提交
414
        use_input_stats(bool, optional): Default True. Obsolete (that is, no longer usable).
415
        data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
416 417 418 419 420 421 422 423 424 425 426
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle

427
          x = paddle.rand((2, 2, 2, 3))
C
Chen Long 已提交
428
          instance_norm_out = paddle.nn.functional.instance_norm(x)
429

Z
zhang wenhui 已提交
430
          print(instance_norm_out)
431 432

    """
433
    if in_dygraph_mode():
434
        out = _C_ops.instance_norm(x, weight, bias, eps)
435
        return out
姜永久 已提交
436 437 438
    else:
        check_variable_and_dtype(
            x, 'input', ['float32', 'float64'], "InstanceNorm"
439
        )
440

姜永久 已提交
441 442 443 444 445
        attrs = {
            "epsilon": eps,
            "momentum": momentum,
            "data_format": data_format,
        }
446

姜永久 已提交
447 448 449 450
        if weight and bias:
            inputs = {"X": [x], "Scale": [weight], "Bias": [bias]}
        else:
            inputs = {"X": [x]}
451

姜永久 已提交
452 453 454 455 456 457 458 459
        helper = LayerHelper('instance_norm', **locals())
        saved_mean = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        saved_variance = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        instance_norm_out = helper.create_variable_for_type_inference(x.dtype)
460

姜永久 已提交
461 462 463 464 465
        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance],
        }
466

姜永久 已提交
467 468 469 470
        helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
        return instance_norm_out
471 472


473 474 475
def local_response_norm(
    x, size, alpha=1e-4, beta=0.75, k=1.0, data_format="NCHW", name=None
):
476
    r"""
477 478
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
479

480
    The formula is as follows:
481

482
    .. math::
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        Output(i, x, y) = Input(i, x, y) / \left(k + \alpha \sum\limits^{\min(C-1, i + size/2)}_{j = \max(0, i - size/2)}(Input(j, x, y))^2\right)^{\beta}

    In the above equation:

    - :math:`size` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.


    Args:
        x (Tensor): The input 3-D/4-D/5-D tensor. The data type is float32.
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If x is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If x is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If x is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
510

511 512
    Returns:
        A tensor storing the transformation result with the same shape and data type as input.
513 514


515
    Examples:
516

517
    .. code-block:: python
518

519
        import paddle
520

521 522 523 524
        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        y = paddle.nn.functional.local_response_norm(x, size=5)
        print(y.shape)  # [3, 3, 112, 112]
    """
Z
zhiboniu 已提交
525
    if not in_dynamic_mode():
526 527 528
        check_variable_and_dtype(x, 'x', ['float32'], 'local_response_norm')
    if data_format not in ['NCL', 'NLC', 'NCHW', 'NHWC', 'NCDHW', 'NDHWC']:
        raise ValueError(
529 530 531
            "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
            "but got {}".format(data_format)
        )
532 533 534 535 536

    sizes = x.shape
    dim = len(sizes)
    if dim < 3:
        raise ValueError(
537 538 539 540
            'Expected 3D or higher dimensionality input, but got {} dimensions'.format(
                dim
            )
        )
541

H
huangjun12 已提交
542
    for i, sz in enumerate(sizes):
H
huangjun12 已提交
543
        if not sz > 0 and i > 0:
544 545 546 547
            raise ValueError(
                "Expected every dim's size to be larger than 0, "
                "but the size of the {}-th dim is {}".format(i, sz)
            )
H
huangjun12 已提交
548

549 550
    channel_last = True if data_format[-1] == "C" else False

551
    from functools import reduce
552

553 554
    sum_sizes = reduce(lambda x, y: x * y, sizes[1:])

555 556 557 558
    div = paddle.unsqueeze(paddle.multiply(x, x), axis=1)
    if not channel_last:
        pad4d_shape = [0, 0, size // 2, (size - 1) // 2]
        pool2d_shape = (size, 1)
559
        reshape_shape = [
560 561 562 563 564
            sizes[0],
            1,
            sizes[1],
            sizes[2],
            int(sum_sizes / (sizes[1] * sizes[2])),
565
        ]
566 567 568 569 570
        pad5d_shape = [0, 0, 0, 0, size // 2, (size - 1) // 2]
        pool3d_shape = (size, 1, 1)
    else:
        pad4d_shape = [size // 2, (size - 1) // 2, 0, 0]
        pool2d_shape = (1, size)
571
        reshape_shape = [
572 573 574 575 576
            sizes[0],
            1,
            sizes[1],
            int(sum_sizes / (sizes[1] * sizes[-1])),
            sizes[-1],
577
        ]
578 579 580 581 582
        pad5d_shape = [size // 2, (size - 1) // 2, 0, 0, 0, 0]
        pool3d_shape = (1, 1, size)

    if dim == 3:
        div = paddle.nn.functional.pad(div, pad=pad4d_shape)
583 584 585
        div = paddle.nn.functional.avg_pool2d(
            div, kernel_size=pool2d_shape, stride=1
        )
586 587 588
        div = paddle.squeeze(div, axis=1)
    else:
        div = paddle.reshape(div, shape=reshape_shape)
589 590 591 592 593 594
        div = paddle.nn.functional.pad(
            div, pad=pad5d_shape, data_format='NCDHW'
        )
        div = paddle.nn.functional.avg_pool3d(
            div, kernel_size=pool3d_shape, stride=1
        )
595 596 597 598 599 600
        div = paddle.reshape(paddle.squeeze(div, axis=1), sizes)

    div = paddle.scale(div, scale=alpha, bias=k)
    div = paddle.pow(div, beta)
    res = paddle.divide(x, div, name=name)
    return res