multiary.h 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/int_array.h"
18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
W
wanghuancoder 已提交
20

21
namespace phi {
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

40 41
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
42

F
From00 已提交
43 44 45 46
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
47
                       const MetaTensor& learning_rate,
48
                       const MetaTensor& master_param,
F
From00 已提交
49 50
                       float rho,
                       float epsilon,
51
                       bool multi_precision,
F
From00 已提交
52 53
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
54 55
                       MetaTensor* avg_squared_update_out,
                       MetaTensor* master_param_outs);
F
From00 已提交
56

H
hong 已提交
57 58 59 60
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
61
                      const MetaTensor& master_param,
H
hong 已提交
62
                      float epsilon,
63
                      bool multi_precision,
H
hong 已提交
64
                      MetaTensor* param_out,
65 66
                      MetaTensor* moment_out,
                      MetaTensor* master_param_out);
H
hong 已提交
67

F
From00 已提交
68 69 70 71 72 73
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
74
                     const MetaTensor& master_param,
F
From00 已提交
75 76 77
                     float beta1,
                     float beta2,
                     float epsilon,
78
                     bool multi_precision,
F
From00 已提交
79 80
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
81 82
                     MetaTensor* inf_norm_out,
                     MetaTensor* master_param_outs);
F
From00 已提交
83

84 85 86 87 88 89 90
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
91 92
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
114 115
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

133
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
134 135 136
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

Y
YuanRisheng 已提交
137 138 139 140
void AddNTensorArrayInferMeta(const std::vector<const MetaTensor*>& x,
                              MetaTensor* out,
                              MetaConfig config);

141 142 143 144
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
145
                  const MetaTensor& ins_tag_weight,
146 147 148 149 150 151 152 153
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
171 172 173
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
174 175 176
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        bool is_test,
H
hong 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool use_global_stats,
                        bool trainable_statistics,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

190 191 192
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
193 194
                             const MetaTensor& scale,
                             const MetaTensor& bias,
195 196 197 198 199 200 201 202
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

203 204 205 206 207 208
void BilinearInferMeta(const MetaTensor& x,
                       const MetaTensor& y,
                       const MetaTensor& weight,
                       const MetaTensor& bias,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());
209

210
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
211 212
                               std::vector<MetaTensor*> out);

213 214 215 216 217
void CheckFiniteAndUnscaleInferMeta(const std::vector<const MetaTensor*>& xs,
                                    const MetaTensor& scale,
                                    std::vector<MetaTensor*> outs,
                                    MetaTensor* found_infinite);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
void CoalesceTensorInferMeta(const std::vector<const MetaTensor*>& input,
                             DataType dtype,
                             bool copy_data,
                             bool set_constant,
                             bool persist_output,
                             float constant,
                             bool use_align,
                             int align_size,
                             int size_of_dtype,
                             const std::vector<int64_t>& concated_shapes,
                             const std::vector<int64_t>& concated_ranks,
                             std::vector<MetaTensor*> output,
                             MetaTensor* fused_output,
                             MetaConfig config = MetaConfig());

233 234 235 236 237
void CheckMemoryContinueInferMeta(const std::vector<const MetaTensor*>& input,
                                  MetaTensor* output,
                                  std::vector<MetaTensor*> xout,
                                  MetaConfig config = MetaConfig());

238
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
239 240 241
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
void CudnnLSTMInferMeta(
    const MetaTensor& x,
    const MetaTensor& init_h,
    const MetaTensor& init_c,
    const MetaTensor& w,
    const paddle::optional<std::vector<const MetaTensor*>>& weight_list,
    const MetaTensor& sequence_length,
    float dropout_prob,
    bool is_bidirec,
    int hidden_size,
    int num_layers,
    bool is_test,
    int seed,
    MetaTensor* out,
    MetaTensor* last_h,
    MetaTensor* last_c,
    MetaTensor* reserve,
    MetaTensor* state_out);

262 263 264 265 266 267 268 269 270
void DecayedAdagradInferMeta(const MetaTensor& param,
                             const MetaTensor& grad,
                             const MetaTensor& moment,
                             const MetaTensor& learning_rate,
                             float decay,
                             float epsilon,
                             MetaTensor* param_out,
                             MetaTensor* moment_out);

271 272 273
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
274
                             const MetaTensor& mask,
275 276 277 278 279 280 281 282 283
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
void DGCMomentumInferMeta(const MetaTensor& param,
                          const MetaTensor& grad,
                          const MetaTensor& velocity,
                          const MetaTensor& learning_rate,
                          const MetaTensor& master_param,
                          const MetaTensor& current_step_tensor,
                          const MetaTensor& nranks_tensor,
                          float mu,
                          bool use_nesterov,
                          const std::string& regularization_method,
                          float regularization_coeff,
                          bool multi_precision,
                          float rescale_grad,
                          float rampup_begin_step,
                          MetaTensor* param_out,
                          MetaTensor* velocity_out,
                          MetaTensor* master_param_out,
                          MetaTensor* grad_out);

Z
zhiboniu 已提交
303 304 305 306 307 308 309 310
void EditDistanceInferMeta(const MetaTensor& hyps,
                           const MetaTensor& refs,
                           const MetaTensor& hypslength,
                           const MetaTensor& refslength,
                           bool normalized,
                           MetaTensor* sequencenum,
                           MetaTensor* out);

H
hong 已提交
311 312 313 314 315 316 317 318 319 320 321 322
void FusedBatchNormActInferMeta(const MetaTensor& x,
                                const MetaTensor& scale,
                                const MetaTensor& bias,
                                const MetaTensor& mean,
                                const MetaTensor& variance,
                                MetaTensor* y,
                                MetaTensor* mean_out,
                                MetaTensor* variance_out,
                                MetaTensor* saved_mean,
                                MetaTensor* saved_variance,
                                MetaTensor* reserve_space);

323 324 325 326 327 328 329 330 331 332 333
void FusedBiasActInferMeta(const MetaTensor& x,
                           const MetaTensor& bias,
                           const MetaTensor& dequant_scales,
                           const MetaTensor& shift,
                           const MetaTensor& smooth,
                           const std::string& act_method,
                           const std::string& compute_dtype,
                           float quant_scale,
                           int quant_round_type,
                           float quant_max_bound,
                           float quant_min_bound,
334 335
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
void FusedLayerNormInferMeta(const MetaTensor& x,
                             const MetaTensor& bias,
                             const MetaTensor& residual,
                             const MetaTensor& norm_weight,
                             const MetaTensor& norm_bias,
                             const float epsilon,
                             const float residual_alpha,
                             const int begin_norm_axis,
                             const float quant_scale,
                             const int quant_round_type,
                             const float quant_max_bound,
                             const float quant_min_bound,
                             MetaTensor* out,
                             MetaTensor* residual_out,
                             MetaTensor* mean,
                             MetaTensor* variance);

354 355 356 357 358
void FusedLinearParamGradAddInferMeta(const MetaTensor& x,
                                      const MetaTensor& dout,
                                      const MetaTensor& dweight,
                                      const MetaTensor& dbias,
                                      bool multi_precision,
Y
Yuang Liu 已提交
359
                                      bool has_bias,
360 361 362
                                      MetaTensor* dweight_out,
                                      MetaTensor* dbias_out);

363 364 365 366 367 368 369
void FusionGroupInferMeta(const std::vector<const MetaTensor*>& ins,
                          const std::vector<int>& outs_dtype,
                          const std::vector<int>& inputs_dtype,
                          const std::string& func_name,
                          int type,
                          std::vector<MetaTensor*> outs);

Z
zhiboniu 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void GenerateProposalsV2InferMeta(const MetaTensor& scores,
                                  const MetaTensor& bbox_deltas,
                                  const MetaTensor& im_shape,
                                  const MetaTensor& anchors,
                                  const MetaTensor& variances,
                                  int pre_nms_top_n,
                                  int post_nms_top_n,
                                  float nms_thresh,
                                  float min_size,
                                  float eta,
                                  bool pixel_offset,
                                  MetaTensor* rpn_rois,
                                  MetaTensor* rpn_roi_probs,
                                  MetaTensor* rpn_rois_num);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);

406 407
void HSigmoidLossInferMeta(const MetaTensor& x,
                           const MetaTensor& label,
408 409
                           const MetaTensor& w,
                           const MetaTensor& bias,
410 411 412 413 414 415 416
                           const MetaTensor& path,
                           const MetaTensor& code,
                           int num_classes,
                           bool is_sparse,
                           MetaTensor* out,
                           MetaTensor* pre_out,
                           MetaTensor* w_out);
417

418 419
void InterpolateInferMeta(
    const MetaTensor& x,
420 421 422
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
423 424 425 426 427 428 429 430 431 432 433
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

傅剑寒 已提交
434 435 436 437 438 439
void IndexPutInferMeta(const MetaTensor& x,
                       const std::vector<const MetaTensor*>& indices,
                       const MetaTensor& value,
                       bool accumulate,
                       MetaTensor* out);

T
Thomas Young 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452
void LambInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
                   float weight_decay,
                   float beta1,
                   float beta2,
                   float epsilon,
453
                   bool always_adapt,
T
Thomas Young 已提交
454 455 456 457 458 459 460 461
                   bool multi_precision,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
void LarsMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& grad,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const std::vector<float>& lars_weight_decay,
    float mu,
    float lars_coeff,
    float epsilon,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

478 479 480 481 482 483 484
void LLMInt8LinearInferMeta(const MetaTensor& x,
                            const MetaTensor& weight,
                            const MetaTensor& bias,
                            const MetaTensor& weight_scale,
                            const float threshold,
                            MetaTensor* out);

485 486 487 488
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
C
Chen Weihang 已提交
489
                       DataType dtype,
490 491
                       MetaTensor* out);

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

Z
ZhangDY-6483 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
void MemoryEfficientAttentionInferMeta(const MetaTensor& query,
                                       const MetaTensor& key,
                                       const MetaTensor& value,
                                       const MetaTensor& bias,
                                       const MetaTensor& cu_seqlens_q,
                                       const MetaTensor& cu_seqlens_k,
                                       const MetaTensor& causal_diagonal,
                                       const MetaTensor& seqlen_k,
                                       const Scalar& max_seqlen_q,
                                       const Scalar& max_seqlen_k,
                                       const bool causal,
                                       const double dropout_p,
                                       const float scale,
                                       const bool is_test,
                                       MetaTensor* output,
                                       MetaTensor* logsumexp,
                                       MetaTensor* seed_and_offset);

547 548 549 550 551 552 553 554 555 556 557
void VariableLengthMemoryEfficientAttentionInferMeta(
    const MetaTensor& query,
    const MetaTensor& key,
    const MetaTensor& value,
    const MetaTensor& seq_lens,
    const MetaTensor& kv_seq_lens,
    const MetaTensor& mask,
    float scale,
    bool causal,
    MetaTensor* out);

558
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
559 560
                       std::vector<MetaTensor*> outputs);

561 562 563 564
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
565
                       const MetaTensor& master_param,
566 567 568 569 570 571 572 573 574 575
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

576 577
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
578

579
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
580 581 582
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
583 584
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
585
                        const MetaTensor& rois_num,
F
From00 已提交
586 587 588 589 590 591
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

592 593 594 595 596 597 598 599 600 601 602 603 604 605
void RmsNormInferMeta(const MetaTensor& x,
                      const MetaTensor& bias,
                      const MetaTensor& residual,
                      const MetaTensor& norm_weight,
                      const MetaTensor& norm_bias,
                      const float epsilon,
                      const int begin_norm_axis,
                      const float quant_scale,
                      const int quant_round_type,
                      const float quant_max_bound,
                      const float quant_min_bound,
                      MetaTensor* out,
                      MetaTensor* residual_out);

H
hong 已提交
606 607 608 609 610
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
611
                      const MetaTensor& mean_grad,
612
                      const MetaTensor& master_param,
H
hong 已提交
613 614 615 616
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
617
                      bool multi_precision,
H
hong 已提交
618 619 620
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
621 622
                      MetaTensor* mean_grad_out,
                      MetaTensor* master_param_outs);
H
hong 已提交
623

624
void RnnInferMeta(const MetaTensor& x,
625 626
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
627
                  const MetaTensor& sequence_length,
628 629 630 631 632 633 634 635 636 637 638 639 640
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
void SendUERecvInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         const MetaTensor& src_index,
                         const MetaTensor& dst_index,
                         const std::string& message_op,
                         const std::string& reduce_op,
                         const IntArray& out_size,
                         MetaTensor* out,
                         MetaTensor* dst_count);

void SendUVInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     const MetaTensor& src_index,
                     const MetaTensor& dst_index,
                     const std::string& message_op,
                     MetaTensor* out);

Z
zyfncg 已提交
658
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
659 660
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
661
                  const MetaTensor& master_param,
H
hong 已提交
662 663 664 665
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

666 667 668 669 670 671 672 673
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            const MetaTensor& pos_weight,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config = MetaConfig());

674
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
675
                    int axis,
676 677
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());
C
csy0225 已提交
678

679
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
680 681
                             std::vector<MetaTensor*> out);

682 683 684 685 686
void ShareBufferInferMeta(const std::vector<const MetaTensor*>& x,
                          const std::vector<bool>& share_dims_and_dtype,
                          std::vector<MetaTensor*> out,
                          std::vector<MetaTensor*> xout);

687 688 689 690 691 692 693 694 695 696
void UpdateLossScalingInferMeta(const std::vector<const MetaTensor*>& xs,
                                const MetaTensor& found_infinite,
                                const MetaTensor& prev_loss_scaling,
                                const MetaTensor& in_good_steps,
                                const MetaTensor& in_bad_steps,
                                std::vector<MetaTensor*> outs,
                                MetaTensor* loss_scaling,
                                MetaTensor* out_good_steps,
                                MetaTensor* out_bad_steps);

0
0x45f 已提交
697 698
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
699 700
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
701 702
                      int blank,
                      bool norm_by_times,
703 704
                      MetaTensor* loss,
                      MetaTensor* warpctcgrad);
0
0x45f 已提交
705

H
Hui Zhang 已提交
706 707 708 709 710 711 712 713 714
void WarprnntInferMeta(const MetaTensor& input,
                       const MetaTensor& label,
                       const MetaTensor& input_lengths,
                       const MetaTensor& label_lengths,
                       int blank,
                       float fastemit_lambda,
                       MetaTensor* loss,
                       MetaTensor* warpctcgrad);

715 716 717 718 719 720 721
void WeightOnlyLinearInferMeta(const MetaTensor& x,
                               const MetaTensor& weight,
                               const MetaTensor& bias,
                               const MetaTensor& weight_scale,
                               const std::string& weight_dtype,
                               MetaTensor* out);

S
Siming Dai 已提交
722 723 724 725 726 727 728 729 730 731 732
void WeightedSampleNeighborsInferMeta(const MetaTensor& row,
                                      const MetaTensor& col_ptr,
                                      const MetaTensor& edge_weight,
                                      const MetaTensor& x,
                                      const MetaTensor& eids,
                                      int sample_size,
                                      bool return_eids,
                                      MetaTensor* out,
                                      MetaTensor* out_count,
                                      MetaTensor* out_eids);

733 734 735 736
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751
void YoloLossInferMeta(const MetaTensor& x,
                       const MetaTensor& gt_box,
                       const MetaTensor& gt_label,
                       const MetaTensor& gt_score,
                       const std::vector<int>& anchors,
                       const std::vector<int>& anchor_mask,
                       int class_num,
                       float ignore_thresh,
                       int downsample_ratio,
                       bool use_label_smooth,
                       float scale_x_y,
                       MetaTensor* loss,
                       MetaTensor* objectness_mask,
                       MetaTensor* gt_match_mask);
752

753
void FusedAdamInferMeta(
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    const std::vector<const MetaTensor*>& params,
    const std::vector<const MetaTensor*>& grads,
    const MetaTensor& learning_rate,
    const std::vector<const MetaTensor*>& moments1,
    const std::vector<const MetaTensor*>& moments2,
    const std::vector<const MetaTensor*>& beta1_pows,
    const std::vector<const MetaTensor*>& beta2_pows,
    const paddle::optional<std::vector<const MetaTensor*>>& master_params,
    const MetaTensor& skip_update,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    int chunk_size,
    float weight_decay,
    bool use_adamw,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> params_out,
    std::vector<MetaTensor*> moments1_out,
    std::vector<MetaTensor*> moments2_out,
    std::vector<MetaTensor*> beta1_pows_out,
    std::vector<MetaTensor*> beta2_pows_out,
    std::vector<MetaTensor*> master_params_out);

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
void FusedConvInferMeta(const MetaTensor& input,
                        const MetaTensor& filter,
                        const MetaTensor& bias,
                        const MetaTensor& residual_param,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::string& padding_algorithm,
                        const std::vector<int>& dilations,
                        int groups,
                        const std::string& data_format,
                        const std::string& mkldnn_data_type,
                        const std::string& fuse_activation,
                        bool fuse_residual_conn,
                        bool force_fp32_output,
                        MetaTensor* out,
                        MetaConfig config);

795 796 797 798 799 800 801 802 803
void MoeInferMeta(const MetaTensor& x,
                  const MetaTensor& gate,
                  const MetaTensor& bmm0,
                  const MetaTensor& bias0,
                  const MetaTensor& bmm1,
                  const MetaTensor& bias1,
                  const std::string& act_type,
                  MetaTensor* out);

FormlessUnit's avatar
FormlessUnit 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void FusedMultiHeadAttentionInferMeta(const MetaTensor& query,
                                      const MetaTensor& key,
                                      const MetaTensor& value,
                                      const MetaTensor& mask,
                                      float scale,
                                      bool causal,
                                      MetaTensor* out);

void FusedMultiHeadAttentionVariableInferMeta(const MetaTensor& query,
                                              const MetaTensor& key,
                                              const MetaTensor& value,
                                              const MetaTensor& seq_lens,
                                              const MetaTensor& mask,
                                              float scale,
                                              bool causal,
                                              MetaTensor* out);

821 822 823
void FusedRopeInferMeta(const MetaTensor& q,
                        const MetaTensor& k,
                        const MetaTensor& v,
824 825
                        const MetaTensor& sin,
                        const MetaTensor& cos,
826 827
                        const MetaTensor& position_ids,
                        bool use_neox_rotary_style,
828 829 830 831
                        MetaTensor* out_q,
                        MetaTensor* out_k,
                        MetaTensor* out_v);

832 833 834 835 836 837 838 839 840 841 842
void MultiheadMatmulInferMeta(const MetaTensor& input,
                              const MetaTensor& w,
                              const MetaTensor& bias,
                              const MetaTensor& bias_qk,
                              const bool transpose_q,
                              const bool transpose_k,
                              const bool transpose_v,
                              const float alpha,
                              const int head_number,
                              MetaTensor* out);

843 844
void MaskedMultiheadAttentionInferMeta(const MetaTensor& x,
                                       const MetaTensor& cache_kv,
845
                                       const MetaTensor& bias,
846 847 848 849 850 851 852 853 854 855 856
                                       const MetaTensor& src_mask,
                                       const MetaTensor& cum_offsets,
                                       const MetaTensor& sequence_lengths,
                                       const MetaTensor& rotary_tensor,
                                       const MetaTensor& beam_cache_offset,
                                       const MetaTensor& qkv_out_scale,
                                       const MetaTensor& out_shift,
                                       const MetaTensor& out_smooth,
                                       int seq_len,
                                       int rotary_emb_dims,
                                       const bool use_neox_rotary_style,
857
                                       const std::string& compute_dtype,
858 859 860 861 862 863 864 865
                                       const float out_scale,
                                       const int quant_round_type,
                                       const float quant_max_bound,
                                       const float quant_min_bound,
                                       MetaTensor* out,
                                       MetaTensor* cache_kv_out,
                                       MetaTensor* beam_cache_offset_out);

W
wanghuancoder 已提交
866 867 868 869
void FullWithTensorInferMeta(const MetaTensor& shape,
                             DataType dtype,
                             MetaTensor* out);

870
}  // namespace phi