loss.py 164.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

17
# TODO: define loss functions of neural network
18
import paddle
19
from paddle import _C_ops, fluid, in_dynamic_mode
20
from paddle.framework import core
Z
Zman 已提交
21
from paddle.static.nn.control_flow import Assert
22
from paddle.utils import deprecated
23

24
from ...common_ops_import import Variable
25
from ...fluid.data_feeder import check_variable_and_dtype
26
from ...fluid.framework import _current_expected_place
27 28
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
29

30 31
__all__ = []

32 33
kIgnoreIndex = -100

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
64
        0-D Tensor, which shape is [], data type is the same as `input` .
65 66 67 68 69 70 71 72 73 74 75 76 77 78

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
97 98 99 100 101 102

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
103 104
        label, axis=reduce_dim
    )
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
146
    if in_dynamic_mode():
147
        return _C_ops.log_loss(input, label, epsilon)
148 149 150 151 152 153 154

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

155 156 157 158 159 160
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
161 162 163
    return loss


164 165 166 167 168 169 170 171 172
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
173 174
    r"""

175 176
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
177 178 179 180 181 182
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

183 184 185
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
186 187 188 189 190 191 192
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
193
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
194 195 196 197

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
198
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
199 200 201 202

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
203 204 205
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
206 207 208 209 210 211

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
212 213 214
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
215 216 217 218 219
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
220
                                      if :attr:`soft_label` is set to :attr:`False`.
221 222 223
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
224 225 226
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
227 228 229 230 231
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
232
        axis (int, optional): The index of dimension to perform softmax calculations. It
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
248 249 250 251 252

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
253
            print(out)
254 255
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
256
    """
257 258
    input_dims = len(list(logits.shape))
    if input_dims == 0:
259
        raise ValueError('The dimension of input should be larger than zero!')
260 261 262 263

    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
264 265
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})'.format(
266 267 268 269 270
                input_dims, label_dims
            )
        )
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
271
    if in_dynamic_mode():
272 273 274 275 276 277 278 279 280
        softmax, loss = _C_ops.cross_entropy_with_softmax(
            logits,
            label,
            soft_label,
            True,
            numeric_stable_mode,
            ignore_index,
            axis,
        )
281 282 283 284
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
285 286 287 288 289 290 291 292 293 294
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
295

姜永久 已提交
296 297 298 299 300 301 302
        outputs = {'Softmax': softmax, 'Loss': loss}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
303

姜永久 已提交
304 305
        if return_softmax:
            return loss, softmax
306

姜永久 已提交
307
        return loss
308 309 310


def npair_loss(anchor, positive, labels, l2_reg=0.002):
311 312
    """

313 314 315
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
316

317 318
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
319

320
    Args:
321
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
322
                        the data type is float32 or float64.
323
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
324 325 326 327
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

328

329
    Returns:
330
      A 0-D Tensor representing the npair loss, the data type is the same as anchor, the shape is [].
331

332 333 334
    Examples:

      .. code-block:: python
335

336
          import paddle
337

338
          DATATYPE = "float32"
339

340 341 342
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
343

344 345
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
346

347
    """
S
supplyout 已提交
348 349 350 351
    if anchor.size == 0:
        raise ValueError("The dims of anchor should be greater than 0.")
    if positive.size == 0:
        raise ValueError("The dims of positive should be greater than 0.")
352 353 354 355 356 357 358 359 360
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
361 362 363 364 365 366
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

367 368 369
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
370 371
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

372 373 374
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
375 376
    l2loss = l2loss * Beta * l2_reg

377 378 379 380 381 382
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
406 407
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
408 409 410 411 412 413 414 415 416 417 418 419 420

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
421
    if in_dynamic_mode():
422 423
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
424
        return square_out
姜永久 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
439

姜永久 已提交
440 441 442 443 444 445 446 447 448
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
449 450


451 452 453 454 455 456 457 458
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
492 493 494
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
524

525 526 527 528 529 530 531
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

532 533 534 535 536 537
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
538 539
        input = erased_input

540 541 542 543 544 545
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
546 547
        label = erased_label

548
    if in_dynamic_mode():
549 550 551
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
552

553 554
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
555 556 557 558 559 560 561 562
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
563 564 565 566 567 568
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
569 570 571 572

    return edit_distance_out, sequence_num


573 574 575
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
576
    """
学渣戊's avatar
学渣戊 已提交
577
    Measure the binary_cross_entropy loss between input predictions ``input``
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
608
            should always be the output of sigmod.  Available dtype is float16, float32, float64.
609 610
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
611
            Available dtype is float16, float32, float64.
612 613 614 615 616 617 618 619 620 621 622 623 624 625
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
626
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
627 628 629 630 631 632 633
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

634 635
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
636
            output = paddle.nn.functional.binary_cross_entropy(input, label)
637
            print(output)  # 0.65537095
638 639 640 641 642

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
643 644 645
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
646

647
    if in_dynamic_mode():
648
        out = _C_ops.bce_loss(input, label)
649
        if weight is not None:
650
            out = _C_ops.multiply(out, weight, 'axis', -1)
651 652

        if reduction == 'sum':
653
            return _C_ops.sum(out, [], None, False)
654

655
        elif reduction == 'mean':
656
            return _C_ops.mean_all(out)
657 658 659
        else:
            return out
    else:
姜永久 已提交
660
        check_variable_and_dtype(
661 662 663 664
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
665 666
        )
        check_variable_and_dtype(
667 668 669 670
            label,
            'label',
            ['float16', 'float32', 'float64'],
            'binary_cross_entropy',
姜永久 已提交
671
        )
J
Jiabin Yang 已提交
672

姜永久 已提交
673 674 675 676 677 678 679 680 681 682 683
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
684

姜永久 已提交
685 686 687 688
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
689
            else:
姜永久 已提交
690 691 692 693 694 695 696 697 698 699
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
700 701


702 703 704
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
705
    r"""
学渣戊's avatar
学渣戊 已提交
706
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
707 708 709 710 711 712 713

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
714
    Firstly, calculate loss function as follows:
715 716

    .. math::
717
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
718

719
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
720 721

    .. math::
722
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
723

N
Noel 已提交
724
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
725 726 727
    we reformulate the loss as follows:

    .. math::
728
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
729

学渣戊's avatar
学渣戊 已提交
730
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
731 732 733 734
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
735 736
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
765
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
766 767 768 769 770 771 772
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
773

774 775
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
776
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
777
            print(output)  # 0.45618808
778 779 780 781 782 783

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
784 785
            % reduction
        )
786

787
    if in_dynamic_mode():
788 789 790
        one = _C_ops.full(
            [1],
            float(1.0),
791
            logit.dtype,
792 793
            _current_expected_place(),
        )
794

795
        if pos_weight is not None:
796
            pos_weight = _C_ops.add(
797 798
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
799 800 801 802
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, pos_weight, False, -100
        )

803
        if weight is not None:
804
            out = _C_ops.multiply(out, weight)
805 806

        if reduction == "sum":
807
            return _C_ops.sum(out, [], None, False)
808
        elif reduction == "mean":
809
            return _C_ops.mean_all(out)
H
hong 已提交
810
        else:
811
            return out
姜永久 已提交
812
    else:
813
        check_variable_and_dtype(
姜永久 已提交
814 815
            logit,
            'logit',
816 817 818 819
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
820 821
            label,
            'label',
822 823 824
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
825 826 827
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
828

姜永久 已提交
829 830 831 832 833 834 835 836 837 838 839 840
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
841
            pos_weight = paddle.add(
姜永久 已提交
842 843
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
844 845 846 847 848 849 850

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label, "pos_weight": pos_weight},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )
姜永久 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
867 868


869 870 871 872 873 874 875 876 877 878 879
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
880 881 882
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
883

884 885 886
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
887 888

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
889 890
    represents the number of classes or the size of word dict.

891 892 893 894
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
941 942 943 944 945
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
946 947 948
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
949 950 951 952
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
953 954

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
955 956 957 958
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
959
    """
L
Linjie Chen 已提交
960
    if num_classes < 2:
961
        raise ValueError(f'Expected num_classes >= 2 (got {num_classes})')
L
Linjie Chen 已提交
962

963
    if in_dynamic_mode():
964
        out, _, _ = _C_ops.hsigmoid_loss(
965 966
            input,
            label,
967 968
            weight,
            bias,
969 970 971 972 973 974
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
975
        return out
姜永久 已提交
976
    else:
977
        check_variable_and_dtype(
姜永久 已提交
978
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
979
        )
姜永久 已提交
980
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
981
        check_variable_and_dtype(
姜永久 已提交
982
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
983
        )
姜永久 已提交
984 985 986 987 988 989 990 991 992 993 994 995
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
996

姜永久 已提交
997 998 999 1000
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
        }
1001

姜永久 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1023 1024


1025
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1026
    r"""
1027
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1028 1029 1030 1031 1032 1033
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1034
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1035 1036


1037
    where :math:`z_i` is given by:
1038 1039 1040

    .. math::

1041
        \mathop{z_i} = \left\{\begin{array}{rcl}
1042 1043 1044
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1058
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1059 1060 1061
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1062
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1063 1064

    Returns:
1065
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

            import paddle

1072 1073
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1074
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1075
            print(output)
1076
            # 0.068004
1077 1078
    """

1079
    if in_dynamic_mode():
1080
        out = _C_ops.huber_loss(input, label, delta)
1081
    else:
1082
        check_variable_and_dtype(
C
co63oc 已提交
1083 1084 1085 1086
            input,
            'input',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1087 1088
        )
        check_variable_and_dtype(
C
co63oc 已提交
1089 1090 1091 1092
            label,
            'label',
            ['float16', 'float32', 'float64', 'uint16'],
            'smooth_l1_loss',
1093
        )
1094 1095
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1096 1097
            dtype=helper.input_dtype()
        )
1098
        out = helper.create_variable_for_type_inference(
1099 1100 1101 1102 1103 1104 1105 1106
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1107 1108 1109 1110

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1111 1112
            " 'none', but received %s, which is not allowed." % reduction
        )
1113 1114 1115
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1116
        return paddle.mean(out)
1117
    elif reduction == 'sum':
1118
        return paddle.sum(out)
1119 1120


1121 1122 1123
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1124
    r"""
1125

1126
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1127

1128
    .. math::
1129
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1146
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1147 1148 1149 1150
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1151
    Returns:
1152
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1153 1154 1155 1156 1157

    Examples:

        .. code-block:: python

1158 1159
            import paddle

Z
Zhong Hui 已提交
1160 1161 1162
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1163
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
1164
            print(loss) # 0.75
1165
    """
1166 1167 1168
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1169 1170
            "received %s, which is not allowed." % reduction
        )
1171
    if in_dynamic_mode():
1172 1173
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1174 1175
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1176 1177
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1178
        if reduction == 'sum':
1179
            return _C_ops.sum(out, [], None, False)
1180
        elif reduction == 'mean':
1181
            return _C_ops.mean_all(out)
1182
        return out
姜永久 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1194

姜永久 已提交
1195 1196 1197
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1198

姜永久 已提交
1199 1200 1201 1202 1203 1204
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1205

姜永久 已提交
1206
        result_out = helper.create_variable_for_type_inference(input.dtype)
1207

姜永久 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1232 1233


1234
def l1_loss(input, label, reduction='mean', name=None):
1235
    r"""
1236

1237
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1238

1239
    If `reduction` set to ``'none'``, the loss is:
1240 1241

    .. math::
1242
        Out = \lvert input - label \rvert
1243

1244
    If `reduction` set to ``'mean'``, the loss is:
1245 1246

    .. math::
1247
        Out = MEAN(\lvert input - label \rvert)
1248

1249
    If `reduction` set to ``'sum'``, the loss is:
1250 1251

    .. math::
1252
        Out = SUM(\lvert input - label \rvert)
1253

1254

1255
    Parameters:
N
Noel 已提交
1256 1257
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1258
        reduction (str, optional): Indicate the reduction to apply to the loss,
1259
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1260 1261 1262
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1263 1264
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1265

1266
    Returns:
1267
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1268
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1269
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
N
Noel 已提交
1270

1271 1272
    Examples:
        .. code-block:: python
N
Noel 已提交
1273

1274
            import paddle
1275

1276 1277
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1278

1279
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1280
            print(l1_loss)
1281 1282
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.34999999)
1283

1284
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1285 1286 1287 1288
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1289

1290
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1291
            print(l1_loss)
1292 1293
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.39999998)
1294

1295 1296 1297 1298
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1299 1300
            "received %s, which is not allowed." % reduction
        )
1301

1302
    if in_dynamic_mode():
1303 1304
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1305
        if reduction == 'mean':
1306
            return _C_ops.mean_all(unreduced)
1307
        elif reduction == 'sum':
1308
            return _C_ops.sum(unreduced, [], None, False)
1309 1310
        else:
            return unreduced
姜永久 已提交
1311 1312
    else:
        check_variable_and_dtype(
1313 1314 1315 1316
            input,
            'input',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
姜永久 已提交
1317 1318
        )
        check_variable_and_dtype(
1319 1320 1321 1322
            label,
            'label',
            ['float32', 'float64', 'int32', 'int64'],
            'l1_loss',
1323
        )
1324

姜永久 已提交
1325 1326 1327 1328 1329 1330 1331 1332
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1333 1334 1335 1336 1337


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1338 1339
    """
    This api returns negative log likelihood.
1340 1341
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1353 1354
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1369

1370 1371 1372 1373
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1374 1375 1376 1377 1378
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1379
                log_out = log_softmax(input)
1380
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1381
                result = nll_loss(log_out, label)
1382
                print(result) # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True, 1.07202101)
1383 1384 1385 1386
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1387 1388
            "'none', but received %s, which is not allowed." % reduction
        )
1389 1390 1391

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1403
    if input_dims < 2:
1404
        raise ValueError(f'Expected 2 or more dimensions (got {input_dims})')
1405 1406 1407 1408 1409 1410 1411 1412

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1413 1414
    n = input_shape[0]
    c = input_shape[1]
1415
    if in_dynamic_mode():
Z
zyfncg 已提交
1416
        if input_dims != 2 and input_dims != 4:
1417 1418
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1419
            out_shape = [n] + input_shape[2:]
1420 1421 1422
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1423
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1424
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1425
        return out
姜永久 已提交
1426 1427 1428
    else:
        helper = LayerHelper('nll_loss', **locals())

1429
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1430 1431
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1432
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1433

姜永久 已提交
1434 1435
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1436
        )
姜永久 已提交
1437 1438 1439 1440 1441 1442
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1443

姜永久 已提交
1444 1445 1446 1447 1448
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1449

姜永久 已提交
1450 1451 1452 1453 1454
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1455

姜永久 已提交
1456
        return out
1457 1458


1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
def poisson_nll_loss(
    input,
    label,
    log_input=True,
    full=False,
    epsilon=1e-8,
    reduction="mean",
    name=None,
):
    r"""Poisson negative log likelihood loss.
    See more detail in :ref:`PoissonNLLLoss <api_paddle_nn_PoissonNLLLoss>` .

    Parameters:
         input (Tensor):
            Input tensor, expectation of underlying Poisson distribution.
            The shape of input tensor should be `(N, *)` or `(*)` where `(*)` denotes any number of extra dimensions.
            It's data type should be float16, bfloat16, float32, float64.
         label (Tensor):
            Label tensor, random sampled from Poisson distribution :math:`label \sim \text{Poisson}(input)`.
            The shape of input tensor should be `(N, *)` or `(*)`, same shape as the input tensor.
            It's data type should be float16, bfloat16, float32, float64.
         log_input (bool, optional):
            Whether to the treat input tensor as log input.
            If ``True`` the loss is computed as, :math:`\exp(\text{input}) - \text{label} * \text{input}` .
            If ``False`` then loss is :math:`\text{input} - \text{label} * \log(\text{input}+\text{epsilon})` .
            Default: ``True``.
         full (bool, optional):
            Whether to compute full loss.
            If ``True``, the Stirling approximation term is added.
            If ``False``, the Stirling approximation is dropped.
            Default: ``False``.
         epsilon (float, optional):
            A small value to avoid evaluation of :math:`\log(0)` when `log_input`\ =\ ``False``. ``epsilon > 0``.
            Default: 1e-8.
         reduction (str, optional):
            Indicate how to reduce the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
         name (str, optional):
            Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
1510
            loss = F.poisson_nll_loss(input, label, log_input=True, reduction='none')
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            print(loss)
            loss = F.poisson_nll_loss(input, label, reduction='mean')
            print(loss)

    """
    # check parameter values
    if epsilon <= 0:
        raise ValueError(
            "The value of `epsilon` in poisson_nll_loss should be positve, but received %f, which is not allowed"
            % epsilon
        )

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in poisson_nll_loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction
        )
    # check input dtype and dimension
    check_variable_and_dtype(
        input,
        'input',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'label',
        ['float16', 'uint16', 'float32', 'float64'],
        'poisson_nll_loss',
    )

    if not (input.shape == label.shape):
        raise ValueError("input's shape must equal to label's shape")

    label = paddle.cast(label, input.dtype)
    loss_out = 0
    if log_input:
        loss_out = paddle.exp(input) - label * input
    else:
        loss_out = input - label * paddle.log(input + epsilon)
    if full:
        stirling_approx = (
            label * paddle.log(label)
            - label
            + 0.5 * paddle.log(2 * math.pi * label)
        )
        loss_out += paddle.where(
            stirling_approx <= 1,
            paddle.zeros_like(stirling_approx),
            stirling_approx,
        )
    if reduction == 'mean':
        loss_out = paddle.mean(loss_out)
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1569
def kl_div(input, label, reduction='mean', name=None):
1570
    r"""
1571
    Calculate the Kullback-Leibler divergence loss
1572 1573 1574 1575 1576 1577 1578
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1579
    Here :math:`x` is input and :math:`y` is label.
1580

1581
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1582

1583
    If `reduction` is ``'mean'``, the output loss is the shape of [], and the output is the average of all losses.
1584

1585
    If `reduction` is ``'sum'``, the output loss is the shape of [], and the output is the sum of all losses.
1586

1587
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1588 1589

    Args:
1590
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1591
            any number of additional dimensions. It's data type should be float32, float64.
1592
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1593 1594 1595 1596 1597 1598 1599
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1600
        name(str, optional): Name for the operation (optional, default is None). For more information,
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1611

1612
            shape = (5, 20)
L
LielinJiang 已提交
1613 1614 1615 1616

            # input(x) should be a distribution in the log space
            x = F.log_softmax(paddle.randn(shape), axis=1).astype('float32')

1617
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1618

1619
            # 'batchmean' reduction, loss shape will be [], who is 0-D Tensor
1620
            pred_loss = F.kl_div(x, target, reduction='batchmean')
1621
            # shape=[]
1622

1623
            # 'mean' reduction, loss shape will be [], who is 0-D Tensor
1624
            pred_loss = F.kl_div(x, target, reduction='mean')
1625
            # shape=[]
1626

1627
            # 'sum' reduction, loss shape will be [], who is 0-D Tensor
1628
            pred_loss = F.kl_div(x, target, reduction='sum')
1629
            # shape=[]
1630 1631

            # 'none' reduction, loss shape is same with input shape
1632
            pred_loss = F.kl_div(x, target, reduction='none')
1633 1634 1635
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1636
    # ugly type promotion
1637 1638 1639 1640
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1641
        input = paddle.cast(input, 'float64')
1642 1643 1644 1645
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1646
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1647

1648
    if in_dynamic_mode():
1649
        out = _C_ops.kldiv_loss(input, label, 'none')
1650 1651 1652 1653 1654 1655 1656 1657 1658
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1659 1660
    else:
        helper = LayerHelper('kl_div', **locals())
1661

姜永久 已提交
1662 1663 1664 1665 1666 1667 1668
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1669

姜永久 已提交
1670 1671 1672 1673 1674 1675 1676
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1677

姜永久 已提交
1678 1679 1680 1681 1682 1683 1684 1685
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1686 1687


1688
def mse_loss(input, label, reduction='mean', name=None):
1689
    r"""
1690
    Accept input predications and label and returns the mean square error.
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1720
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1721

1722 1723 1724
    Examples:

        .. code-block:: python
1725

1726 1727
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1728 1729
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1730
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1731
            print(output)
1732
            # 0.04000002
1733 1734 1735 1736 1737 1738

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1739 1740
            "but received {}.".format(reduction)
        )
1741

Z
zhiboniu 已提交
1742
    if not in_dynamic_mode():
1743 1744 1745 1746 1747 1748
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1749 1750

    if reduction == 'none':
1751
        return paddle.square(paddle.subtract(input, label), name=name)
1752
    elif reduction == 'mean':
1753 1754 1755
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1756
    else:
1757 1758 1759
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1760 1761


1762 1763 1764 1765 1766 1767 1768 1769 1770
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1771 1772
    """

1773 1774 1775
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1776 1777 1778
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1779
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1780 1781 1782
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1783 1784 1785
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1786

1787
    Returns:
1788
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``log_probs``.
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1807
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1820 1821 1822 1823 1824 1825
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1826

1827 1828 1829 1830
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1831
                reduction='none')
1832 1833 1834
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1835

1836 1837 1838 1839 1840
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1841
            print(loss)
1842 1843
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.13760614)
1844 1845 1846

    """

1847 1848 1849 1850 1851 1852 1853 1854
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
1855
        if in_dynamic_mode():
1856 1857 1858 1859 1860 1861 1862 1863
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1864 1865
        else:
            helper = LayerHelper('warpctc', **locals())
1866
            check_variable_and_dtype(
姜永久 已提交
1867
                input, 'input', ['float32', 'float64'], "warpctc"
1868
            )
姜永久 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1880

姜永久 已提交
1881 1882 1883 1884 1885 1886
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1887

姜永久 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1898 1899

    loss_out = warpctc(
1900 1901
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1902

Z
zhiboniu 已提交
1903
    loss_out = paddle.squeeze(loss_out, [-1])
1904 1905
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1906
        loss_out = paddle.mean(loss_out / label_lengths)
1907 1908 1909
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
C
cyberslack_lee 已提交
1927
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax is the longest length of input logit sequence. The data type should be float32 or float64.
H
Hui Zhang 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1937
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same as ``logprobs``.
H
Hui Zhang 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
1969 1970
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        4.49566677)
H
Hui Zhang 已提交
1971 1972 1973 1974 1975
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
1976
        if in_dynamic_mode():
H
Hui Zhang 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
2034 2035


2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
2047
    r"""
2048 2049
    .. math::

2050
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
2051

2052
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
2053 2054 2055 2056
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
2057 2058 2059 2060
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
2061 2062

    Args:
G
Guoxia Wang 已提交
2063
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
2064
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
2065 2066 2067 2068 2069
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
2070
        group (Group, optional): The group instance return by paddle.distributed.new_group
2071 2072
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2073 2074 2075 2076 2077 2078 2079 2080
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
2081 2082 2083 2084 2085
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
2086
            the shape is ``[]``.
2087 2088 2089 2090

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2091
        :name: code-example1
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2140
        :name: code-example2
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2187
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2231
    if not (group is False or group is None or hasattr(group, 'is_member')):
2232 2233
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2234 2235 2236 2237
             (got group: {})'.format(
                group
            )
        )
2238 2239 2240
        return

    if hasattr(group, 'is_member') and not group.is_member():
2241 2242
        return

2243
    ring_id = 0
2244 2245
    rank = 0
    nranks = 1
2246
    if group is not False:
2247 2248 2249 2250
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2251 2252 2253 2254 2255
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2256
            nranks = parallel_env.world_size if group is None else group.nranks
2257 2258 2259 2260 2261

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2262
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2263
             (got input_dims{}, label_dims{})'.format(
2264 2265 2266
                input_dims, label_dims
            )
        )
2267 2268 2269
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2270
    if in_dynamic_mode():
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2283 2284 2285 2286 2287 2288 2289 2290
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2291 2292 2293 2294 2295 2296 2297
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2298
            logits,
姜永久 已提交
2299 2300 2301
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2302
        )
姜永久 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2323 2324 2325 2326
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2327

2328 2329 2330 2331 2332 2333
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2334 2335 2336 2337
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2352
    r"""
2353 2354
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2355 2356 2357 2358 2359 2360
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2361 2362 2363
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2390 2391 2392
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2393 2394 2395 2396 2397
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2398
                                      if :attr:`soft_label` is set to :attr:`False`.
2399 2400 2401
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2402 2403 2404
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2405 2406 2407 2408 2409
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2410
        axis (int, optional): The index of dimension to perform softmax calculations. It
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2426 2427 2428 2429 2430

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2431
            print(out)
2432 2433
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2434
    """
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2457
    r"""
2458

2459
    By default, the cross entropy loss function is implemented using softmax. This function
2460 2461
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2462

2463
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2464

2465
    By default, calculate the mean of the result, and you can also affect
2466
    the default behavior by using the reduction parameter. Please refer to the part of
2467
    parameters for details.
2468

2469
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2470
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2471
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2472

2473
    The calculation includes the following two steps.
2474

2475
    - **1.softmax cross entropy**
2476

2477
        1. Hard label (each sample can only be assigned into one category)
2478

2479
        1.1. when use_softmax=True
2480

2481 2482
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2525
                \\loss_j=loss_j*weight[label_j]
2526

2527

2528 2529 2530 2531 2532 2533 2534
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2535
            2.1 if the ``reduction`` parameter is ``none``
2536 2537 2538

                Return the previous result directly

2539
            2.2 if the ``reduction`` parameter is ``sum``
2540 2541 2542 2543 2544 2545

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2546 2547
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2548

2549
            2.3.1. If the  ``weight``  parameter is ``None``
2550 2551 2552

                   Return the average value of the previous results

2553
            .. math::
2554 2555 2556 2557 2558 2559 2560 2561
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2562
            .. math::
2563
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2564 2565 2566

            2. Soft labels (soft_label = True)

2567
            .. math::
2568
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2569 2570


2571
    Parameters:
2572
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2573

2574
            Note:
2575
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2576
                2. when use_softmax=False, it expects the output of softmax operator.
2577

2578
        label (Tensor):
2579 2580 2581 2582
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2583
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2584 2585
            and the sum of the labels for each sample should be 1.

2586
        weight (Tensor, optional): a manual rescaling weight given to each class.
2587
            If given, has to be a Tensor of size C and the data type is float32, float64.
2588
            Default is ``'None'`` .
2589
        ignore_index (int64, optional): Specifies a target value that is ignored
2590 2591
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2592
            Default is ``-100`` .
2593
        reduction (str, optional): Indicate how to average the loss by batch_size,
2594 2595
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2596
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2597 2598
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2599 2600
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2601 2602
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2603
            Default is ``-1`` .
2604
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2605
            Default is ``True``.
2606
        name (str, optional): The name of the operator. Default is ``None`` .
2607
            For more information, please refer to :ref:`api_guide_Name` .
2608 2609 2610

    Returns:

2611 2612
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2613

2614
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2615

2616
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2617

2618
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2619

2620
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2621

2622
    Examples:
2623
        .. code-block:: python
2624 2625

            # hard labels
2626 2627 2628 2629 2630
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2631
            input =  paddle.rand([N, C], dtype='float64')
2632
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2633 2634
            weight = paddle.rand([C], dtype='float64')

2635 2636 2637
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2638 2639 2640
                                        input,
                                        label)
            print(dy_ret)
2641 2642
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        5.34043430)
2643 2644

        .. code-block:: python
2645 2646

            # soft labels
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2660 2661 2662 2663 2664 2665 2666
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
2667 2668
            # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        1.11043464)
C
Chen Long 已提交
2669

2670 2671 2672 2673
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2674 2675
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2676 2677
            % reduction
        )
2678
    if ignore_index > 0 and soft_label:
2679 2680
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2681 2682 2683
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2684

2685
    input_dims = len(list(input.shape))
2686 2687 2688
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2689 2690 2691
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2692

2693 2694 2695 2696 2697 2698 2699 2700
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(
                input_dims, label_dims
            )
        )

2701
    if in_dynamic_mode():
2702
        if not soft_label:
2703 2704 2705
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2706 2707 2708
        _, out = _C_ops.cross_entropy_with_softmax(
            input, label, soft_label, use_softmax, True, ignore_index, axis
        )
2709 2710 2711

        if weight is not None:
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2712
            if soft_label:
2713 2714 2715 2716
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2717 2718 2719 2720 2721 2722
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2723 2724 2725 2726
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2727
                out = _C_ops.multiply(out, weight_gather_reshape)
2728 2729 2730 2731 2732
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2745
                    # TODO: Temporarily use squeeze instead of squeeze_
2746 2747 2748
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2749
                if axis != -1 and axis != valid_label.ndim - 1:
2750 2751 2752 2753 2754 2755 2756 2757 2758
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2759
                    weight_gather = _C_ops.gather_nd(
2760 2761
                        weight, valid_label.transpose(temp_perm)
                    )
2762
                else:
2763
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2764 2765 2766
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2767
                input_shape = list(label.shape)
2768 2769 2770
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2771
                out = paddle.cast(out, weight_gather_reshape.dtype)
2772
                out = _C_ops.multiply(out, weight_gather_reshape)
2773 2774 2775 2776 2777

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2778
            return _C_ops.sum(out, [], None, False)
2779 2780 2781 2782 2783 2784 2785
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2786 2787 2788
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2789
                out_sum = _C_ops.sum(out, [], None, False)
2790 2791 2792 2793 2794
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2795
                    count = _C_ops.sum(mask, [], None, False)
2796 2797 2798
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2799 2800 2801
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2802
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2803 2804 2805
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2806
                out_sum = _C_ops.sum(out, [], None, False)
2807 2808 2809
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2810 2811
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2812
                return _C_ops.mean_all(out)
2813 2814 2815 2816 2817 2818

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2850

2851
        if weight is not None:
姜永久 已提交
2852 2853 2854 2855 2856 2857 2858
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2859
            if soft_label:
2860
                # chajchaj:
姜永久 已提交
2861
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2862
                # weight's shape is C, where C is class num.
2863 2864
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2865 2866 2867 2868 2869 2870
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2871

2872 2873 2874 2875
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2876 2877 2878 2879
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2880 2881 2882 2883 2884
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2885 2886 2887
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2888
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2889
                    (label != ignore_index), input.dtype
2890 2891 2892 2893 2894 2895 2896 2897
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2898
                if axis != -1 and axis != valid_label.ndim - 1:
2899 2900 2901 2902 2903 2904 2905 2906 2907
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2908 2909
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2910
                    )
2911
                else:
姜永久 已提交
2912 2913
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2914 2915
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2916

2917
                input_shape = list(label.shape)
2918 2919 2920
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2921
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2922

2923
        if reduction == "sum":
姜永久 已提交
2924
            return paddle.sum(out, name=name)
2925
        elif reduction == "mean":
姜永久 已提交
2926 2927
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2928 2929 2930
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2931
                mask = label != ignore_index
2932
                if weight is None:
2933
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2934
                    count = paddle.sum(mask, name=name)
2935
                    ret = out_sum / (count + (count == 0.0))
2936 2937
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2938
                    weight_ignored = paddle.multiply(
2939 2940
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2941
                    weight_sum = paddle.sum(weight_ignored, name=name)
2942
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2943 2944
                return ret
            elif weight is not None:
姜永久 已提交
2945 2946
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2947
                return out_sum / (total_weight + (total_weight == 0.0))
2948
            else:
姜永久 已提交
2949 2950
                return paddle.mean(out, name=name)

2951
        else:
2952 2953 2954
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2955
            return out
2956 2957


2958 2959 2960 2961 2962 2963 2964 2965 2966
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2967
    r"""
2968 2969 2970 2971 2972 2973
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2974
    This operator measures focal loss function as follows:
2975 2976

    .. math::
2977
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2978

2979
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2980 2981 2982 2983 2984

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2985
           Out = \frac{Out}{normalizer}
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
3002 3003
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
3004 3005
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
3006
            it should be between 0 and 1.  Default value is set to 0.25.
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3019
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
3031
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
3032
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
3033
            print(output)  # 0.65782464
3034 3035 3036 3037 3038 3039

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
3040 3041
            % reduction
        )
3042 3043

    if normalizer is not None:
3044 3045 3046 3047 3048 3049
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
3050 3051 3052 3053
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
3054
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
3055 3056 3057
                    normalizer_dims
                )
            )
3058

3059
    if in_dynamic_mode():
3060
        place = _current_expected_place()
3061
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
3062

3063
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
3064
            logit, label, None, False, -100
3065
        )
3066

3067
        pred = _C_ops.sigmoid(logit)
3068

3069 3070
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3071 3072 3073 3074
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3075 3076

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3077 3078
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3079 3080 3081 3082
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3083
        loss = _C_ops.multiply(alpha_t, loss)
3084 3085

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3086 3087
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3088 3089

        if normalizer is not None:
3090
            loss = _C_ops.divide(loss, normalizer)
3091 3092

        if reduction == "sum":
3093
            return _C_ops.sum(loss, [], None, False)
3094
        elif reduction == "mean":
3095
            return _C_ops.mean_all(loss)
3096 3097 3098

        return loss

姜永久 已提交
3099 3100 3101
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3102
        )
姜永久 已提交
3103 3104
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3105
        )
3106

姜永久 已提交
3107 3108 3109 3110
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
3111
            logit, label, None, reduction='none', name=bce_name
3112
        )
3113

姜永久 已提交
3114 3115
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3116

姜永久 已提交
3117 3118
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3119

姜永久 已提交
3120 3121
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3122

姜永久 已提交
3123 3124 3125
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3126

姜永久 已提交
3127 3128 3129 3130
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3131

姜永久 已提交
3132
        return loss
3133 3134


3135 3136 3137
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3138
    r"""
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3167

3168 3169 3170 3171 3172
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3173

3174 3175
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3176

3177 3178
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3179

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
3190
            # Tensor(1.54908717)
Y
yangguohao 已提交
3191 3192 3193 3194
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3195 3196
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3197 3198

    if not (input.shape == label.shape):
3199 3200 3201 3202
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3203

3204
    if not in_dynamic_mode():
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3217

3218 3219 3220 3221
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3222 3223

    if weight is not None:
3224
        if not in_dynamic_mode():
3225 3226 3227 3228 3229 3230
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3243 3244
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3245
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
3314
            # Tensor(0.22222222)
3315 3316 3317 3318 3319
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3320 3321
            "but received {}.".format(reduction)
        )
3322

3323
    if not in_dynamic_mode():
3324 3325 3326 3327 3328 3329
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3330 3331

    zero_ = paddle.zeros([1], dtype=input.dtype)
3332 3333 3334
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3335 3336 3337 3338 3339 3340 3341

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3342 3343


3344 3345 3346
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3347
    r"""
3348
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3364 3365
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3366
                         Available dtypes are float32, float64.
3367
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3368
                         Available dtypes are float32, float64.
3369
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
3384
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
3396
            print(output)  # 0.21155193
3397 3398

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
3399
            print(output)  # 0.42310387
3400 3401 3402 3403 3404 3405 3406

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3407 3408
            "1D target tensor expected, multi-target not supported"
        )
3409 3410 3411 3412

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3413 3414
            "different sizes"
        )
3415 3416 3417 3418 3419 3420 3421 3422

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3423 3424
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3425
    if label.dtype not in [
3426 3427 3428 3429
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3453 3454


3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3484
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3500

3501 3502
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3503

Y
yangguohao 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3515

Y
yangguohao 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3535
            # Tensor(0.19165580)
Y
yangguohao 已提交
3536 3537 3538

    """
    if reduction not in ['sum', 'mean', 'none']:
3539 3540 3541 3542 3543
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3544 3545 3546 3547
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3548
    if not in_dynamic_mode():
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3567 3568

    if not (input.shape == positive.shape == negative.shape):
3569 3570 3571 3572 3573
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3574

3575 3576 3577
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3578
        else paddle.nn.PairwiseDistance(2)
3579
    )
Y
yangguohao 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3591 3592
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3602 3603


3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
3685
            # Tensor(0.19165580)
Y
yangguohao 已提交
3686 3687 3688 3689 3690

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3691 3692
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3693 3694 3695 3696
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
3697
    if not in_dynamic_mode():
3698 3699 3700 3701 3702 3703 3704 3705 3706
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3707 3708

    if not (input.shape == positive.shape == negative.shape):
3709 3710 3711 3712 3713
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3731 3732


3733 3734 3735 3736 3737 3738 3739 3740 3741
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3804 3805
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3806

3807
    if not in_dynamic_mode():
3808 3809 3810 3811 3812 3813
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3814 3815 3816 3817
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3818 3819 3820
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3821 3822 3823
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
3824
        if not in_dynamic_mode():
3825 3826 3827
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3828 3829 3830
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3831 3832 3833 3834
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3835 3836 3837
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3838 3839 3840 3841 3842
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3843
    else:
3844 3845 3846 3847 3848 3849 3850 3851 3852
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3862 3863
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3864

3865 3866 3867 3868 3869 3870 3871 3872
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3873
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3874
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3875
            Available dtype is float32, float64.
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3893
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
3894 3895 3896 3897 3898 3899 3900 3901 3902

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3903
            print(output)
3904 3905
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.64022040)
3906 3907 3908 3909

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3910 3911

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3912 3913 3914 3915 3916 3917 3918
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3919

3920 3921 3922 3923
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3924 3925 3926
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3927

3928
    if not in_dynamic_mode():
3929
        fluid.data_feeder.check_variable_and_dtype(
3930 3931 3932 3933 3934 3935 3936 3937
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3938 3939

    if not (input.shape == label.shape):
3940
        raise ValueError("input's shape must equal to " "label's shape")
3941

3942
    label = paddle.cast(label, input.dtype)
3943 3944 3945 3946 3947 3948 3949 3950
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out
Z
Zman 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004


def gaussian_nll_loss(
    input,
    label,
    variance,
    full=False,
    epsilon=1e-6,
    reduction='mean',
    name=None,
):
    r"""Gaussian negative log likelihood loss.

    Gaussian negative log likelihood loss among ``input``, ``variance`` and
    ``label``. Note that the ``label`` is treated as samples from Gaussian distributions.
    This function is used to train a neural network predicts
    the ``input`` and ``variance`` of a gaussian distribution that ``label`` are supposed to
    be coming from. This means ``input`` and ``variance`` should be functions(the neural network) of some inputs.

    For a ``label`` having Gaussian distribution with ``input`` and ``variance`` predicted by neural network
    the loss is calculated as follows:

    .. math::
        \text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
        \ \text{epsilon}\right)\right) + \frac{\left(\text{input} - \text{label}\right)^2}
        {\text{max}\left(\text{var}, \ \text{epsilon}\right)}\right) + \text{const.}

    where :attr:`epsilon` is used for stability. By default, the constant term of
    the loss function is omitted unless :attr:`full` is ``True``. If ``variance`` is not the same
    size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
    of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.

    Args:
        input (Tensor): input tensor, :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
            dimensions. Expectation of the Gaussian distribution, available dtype is float32, float64.
        label (Tensor): target label tensor, :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
            but with one dimension equal to 1 (to allow for broadcasting). Sample from the Gaussian distribution, available dtype is float32, float64.
        variance (Tensor): tensor of positive variance(s), :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
            with one dimension equal to 1, or same shape as the input but with one fewer
            dimension (to allow for broadcasting). One for each of the expectations
            in the input (heteroscedastic), or a single one (homoscedastic), available dtype is float32, float64.
        full (bool, optional): include the constant term in the loss
            calculation. Default: ``False``.
        epsilon (float, optional): value used to clamp ``variance`` (see note below), for
            stability. Default: 1e-6.
        reduction (str, optional): specifies the reduction to apply to the
            output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
            will be applied, ``'mean'``: the output is the average of all batch
            member losses, ``'sum'``: the output is the sum of all batch member
            losses. Default: ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:

4005
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [].
Z
Zman 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

    Examples::
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
            variance = paddle.ones([5, 2], dtype=paddle.float32)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='none')
            print(loss)

            loss = F.gaussian_nll_loss(input, label, variance, reduction='mean')
            print(loss)

    Note:
        The clamping of ``variance`` is ignored with respect to autograd, and so the
        gradients are unaffected by it.
    """

    # Check variance shape
    # If variance.shape == input.shape, the case is heteroscedastic and no further checks are needed.
    # Otherwise:
    if variance.shape != input.shape:
        # If variance is one dimension short of input, but the shape match otherwise, then this is a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2)
        # -> unsqueeze variance so that variance.shape = (10, 2, 1)
        # this is done so that broadcasting can happen in the loss calculation
        if input.shape[:-1] == variance.shape:
            variance = paddle.unsqueeze(variance, -1)
        # This checks if the shape match up to the final dimension, and the final dimension of variance is of shape 1.
        # This is also a homoscedastic case.
        # e.g. input.shape = (10, 2, 3), variance.shape = (10, 2, 1)
        elif (
            input.shape[:-1] == variance.shape[:-1] and variance.shape[-1] == 1
        ):  # Heteroscedastic case
            pass
        # If none of the above pass, then the shape of variance is incorrect.
        else:
            raise ValueError("variance is of incorrect shape")

    # Check validity of reduction mode
    if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
        raise ValueError(reduction + " is not valid")

    check_variable_and_dtype(
        input,
        'Input',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        label,
        'Label',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    check_variable_and_dtype(
        variance,
        'Variance',
        ['float32', 'float64'],
        'gaussian_nll_loss',
    )
    # Entries of variance must be non-negative
4072
    if not in_dynamic_mode():
Z
Zman 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
        condition = paddle.all(variance > 0)
        Assert(condition, [variance], 6)
    else:
        if input.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of input Variable must be 'float32' or 'float64'"
            )
        if label.dtype not in [
            paddle.float32,
            paddle.float64,
        ]:
            raise ValueError(
                "The data type of label Variable must be 'float32', 'float64'"
            )
        if variance.dtype not in [paddle.float32, paddle.float64]:
            raise ValueError(
                "The data type of variance Variable must be 'float32', 'float64'"
            )
        if paddle.any(variance < 0):
            raise ValueError("variance has negative entry/entries")

    # Clamp for stability
    variance = variance.clone()
    with paddle.no_grad():
        variance = paddle.clip(variance, min=epsilon)
    # Calculate the loss
    loss = 0.5 * (
        paddle.log(variance) + paddle.square(input - label) / variance
    )
    if full:
        loss += 0.5 * math.log(2 * math.pi)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss