yolov3_loss_op.cc 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
13

14
#include "paddle/fluid/framework/infershape_utils.h"
15
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
16
#include "paddle/fluid/imperative/type_defs.h"
17
#include "paddle/phi/core/infermeta_utils.h"
18
#include "paddle/phi/infermeta/backward.h"
19
#include "paddle/phi/infermeta/multiary.h"
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
29
  phi::KernelKey GetExpectedKernelType(
30
      const framework::ExecutionContext& ctx) const override {
31 32
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          platform::CPUPlace());
33 34 35 36 37 38 39
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
40
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
41
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
42
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
43
             "box locations, confidence score and classification one-hot"
44
             "keys of each anchor box");
45 46 47 48
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
49 50
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
51 52 53 54 55
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
56
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
57
             "box class id.");
58 59 60 61
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
62 63
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
64 65
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
66
              "This is a 1-D tensor with shape of [N]");
67 68 69 70 71 72
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
73
              "This is an intermediate tensor with shape of [N, B], "
74 75 76
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
77 78

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
79 80
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
81 82 83 84 85 86
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
87
    AddAttr<int>("downsample_ratio",
88 89 90 91
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
92
    AddAttr<float>("ignore_thresh",
93 94
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
95 96
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
97
        .SetDefault(true);
98 99 100 101
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
102
    AddComment(R"DOC(
103
         This operator generates yolov3 loss based on given predict result and ground
104
         truth boxes.
105

106
         The output of previous network is in shape [N, C, H, W], while H and W
107
         should be the same, H and W specify the grid size, each grid point predict
T
tink2123 已提交
108 109
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
110 111 112
         dimension), C should be equal to S * (class_num + 5), class_num is the object
         category number of source dataset(such as 80 in coco dataset), so in the
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
113
         also includes confidence score of the box and class one-hot key of each anchor box.
114

D
dengkaipeng 已提交
115 116
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
117 118

         $$
119 120 121 122 123 124
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
125
         b_w = p_w e^{t_w}
126 127
         $$
         $$
128 129 130
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
131
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
132
         and :math:`p_w, p_h` is specified by anchors.
133 134

         As for confidence score, it is the logistic regression value of IoU between
135 136
         anchor boxes and ground truth boxes, the score of the anchor box which has
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore
137 138
         thresh, the confidence score loss of this anchor box will be ignored.

139
         Therefore, the yolov3 loss consists of three major parts: box location loss,
140 141
         objectness loss and classification loss. The L1 loss is used for
         box coordinates (w, h), sigmoid cross entropy loss is used for box
142
         coordinates (x, y), objectness loss and classification loss.
143

144
         Each groud truth box finds a best matching anchor box in all anchors.
145
         Prediction of this anchor box will incur all three parts of losses, and
146 147 148
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

149
         In order to trade off box coordinate losses between big boxes and small
150
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
151
         calculated as follows.
152 153 154 155

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
156

D
dengkaipeng 已提交
157
         Final loss will be represented as follows.
D
dengkaipeng 已提交
158 159

         $$
160 161
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
162
         $$
163 164

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
165
         target will be smoothed when calculating classification loss, target of
D
dengkaipeng 已提交
166 167
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
168

169 170
         While :attr:`GTScore` is given, which means the mixup score of ground truth
         boxes, all losses incured by a ground truth box will be multiplied by its
171
         mixup score.
172 173 174 175 176 177 178 179
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

180
 protected:
181
  phi::KernelKey GetExpectedKernelType(
182
      const framework::ExecutionContext& ctx) const override {
183 184
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          platform::CPUPlace());
185 186 187
  }
};

H
hong 已提交
188 189
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
190
 public:
H
hong 已提交
191
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
192 193

 protected:
194
  void Apply(GradOpPtr<T> op) const override {
195
    op->SetType("yolov3_loss_grad");
H
hong 已提交
196 197 198 199 200 201 202
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
203

H
hong 已提交
204
    op->SetAttrMap(this->Attrs());
205

H
hong 已提交
206
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
207 208 209
    op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
210 211 212
  }
};

213 214 215 216
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
217 218
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss,
                            Yolov3LossInferShapeFunctor,
219
                            PD_INFER_META(phi::YoloLossInferMeta));
220 221
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss_grad,
                            Yolov3LossGradInferShapeFunctor,
222
                            PD_INFER_META(phi::YoloLossGradInferMeta));
223 224 225
REGISTER_OPERATOR(yolov3_loss,
                  ops::Yolov3LossOp,
                  ops::Yolov3LossOpMaker,
H
hong 已提交
226
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
227 228
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>,
                  Yolov3LossInferShapeFunctor);
229 230 231
REGISTER_OPERATOR(yolov3_loss_grad,
                  ops::Yolov3LossOpGrad,
                  Yolov3LossGradInferShapeFunctor);