yolov3_loss_op.cc 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
13

14
#include "paddle/fluid/framework/infershape_utils.h"
15
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
16
#include "paddle/fluid/imperative/type_defs.h"
17 18
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
32 33 34
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
35 36 37 38 39 40 41
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
42
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
43
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
44
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
45
             "box locations, confidence score and classification one-hot"
46
             "keys of each anchor box");
47 48 49 50
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
51 52
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
53 54 55 56 57
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
58
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
59
             "box class id.");
60 61 62 63
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
64 65
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
66 67
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
68
              "This is a 1-D tensor with shape of [N]");
69 70 71 72 73 74
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
75
              "This is an intermediate tensor with shape of [N, B], "
76 77 78
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
79 80

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
81 82
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
83 84 85 86 87 88
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
89
    AddAttr<int>("downsample_ratio",
90 91 92 93
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
94
    AddAttr<float>("ignore_thresh",
95 96
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
97 98
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
99
        .SetDefault(true);
100 101 102 103
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
104
    AddComment(R"DOC(
105
         This operator generates yolov3 loss based on given predict result and ground
106
         truth boxes.
107 108
         
         The output of previous network is in shape [N, C, H, W], while H and W
109
         should be the same, H and W specify the grid size, each grid point predict 
T
tink2123 已提交
110 111
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
112 113 114 115
         dimension), C should be equal to S * (class_num + 5), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so in the 
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor box.
116

D
dengkaipeng 已提交
117 118
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
119 120

         $$
121 122 123 124 125 126
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
127
         b_w = p_w e^{t_w}
128 129
         $$
         $$
130 131 132
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
133
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
134
         and :math:`p_w, p_h` is specified by anchors.
135 136 137

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
D
dengkaipeng 已提交
138
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
139 140
         thresh, the confidence score loss of this anchor box will be ignored.

141 142 143 144
         Therefore, the yolov3 loss consists of three major parts: box location loss,
         objectness loss and classification loss. The L1 loss is used for 
         box coordinates (w, h), sigmoid cross entropy loss is used for box 
         coordinates (x, y), objectness loss and classification loss.
145

146 147
         Each groud truth box finds a best matching anchor box in all anchors. 
         Prediction of this anchor box will incur all three parts of losses, and
148 149 150
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

151 152
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
153
         calculated as follows.
154 155 156 157

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
158

D
dengkaipeng 已提交
159
         Final loss will be represented as follows.
D
dengkaipeng 已提交
160 161

         $$
162 163
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
164
         $$
165 166 167

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
         target will be smoothed when calculating classification loss, target of 
D
dengkaipeng 已提交
168 169
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
170 171

         While :attr:`GTScore` is given, which means the mixup score of ground truth 
172
         boxes, all losses incured by a ground truth box will be multiplied by its 
173
         mixup score.
174 175 176 177 178 179 180 181
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
182 183 184 185 186 187
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Loss")), true,
        platform::errors::NotFound("Input(Loss@GRAD) should not be null"));
188 189 190 191 192 193
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

194
 protected:
195 196
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
197 198 199
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
200 201 202
  }
};

H
hong 已提交
203 204
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
205
 public:
H
hong 已提交
206
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
207 208

 protected:
209
  void Apply(GradOpPtr<T> op) const override {
210
    op->SetType("yolov3_loss_grad");
H
hong 已提交
211 212 213 214 215 216 217
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
218

H
hong 已提交
219
    op->SetAttrMap(this->Attrs());
220

H
hong 已提交
221
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
222 223 224
    op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
225 226 227
  }
};

228 229 230 231
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
232 233
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss, Yolov3LossInferShapeFunctor,
                            PD_INFER_META(phi::Yolov3LossInferMeta));
234
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
H
hong 已提交
235
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
236 237
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>,
                  Yolov3LossInferShapeFunctor);
238
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);