Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5d0b568e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5d0b568e
编写于
11月 06, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add YOLOv3 loss operator. test=develop
上级
9a6e2392
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
493 addition
and
0 deletion
+493
-0
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+130
-0
paddle/fluid/operators/yolov3_loss_op.cu
paddle/fluid/operators/yolov3_loss_op.cu
+23
-0
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+340
-0
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
0 → 100644
浏览文件 @
5d0b568e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
Yolov3LossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTBox"
),
"Input(GTBox) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Yolov3LossOp should not be null."
);
// PADDLE_ENFORCE(ctx->HasAttr("img_height"),
// "Attr(img_height) of Yolov3LossOp should not be null. ");
// PADDLE_ENFORCE(ctx->HasAttr("anchors"),
// "Attr(anchor) of Yolov3LossOp should not be null.")
// PADDLE_ENFORCE(ctx->HasAttr("class_num"),
// "Attr(class_num) of Yolov3LossOp should not be null.");
// PADDLE_ENFORCE(ctx->HasAttr(
// "ignore_thresh",
// "Attr(ignore_thresh) of Yolov3LossOp should not be null."));
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gt
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
img_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"img_height"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
box_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"box_num"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_GT
(
img_height
,
0
,
"Attr(img_height) value should be greater then 0"
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
"Attr(anchors) length should be even integer."
);
PADDLE_ENFORCE_GT
(
box_num
,
0
,
"Attr(box_num) should be an integer greater then 0."
);
PADDLE_ENFORCE_GT
(
class_num
,
0
,
"Attr(class_num) should be an integer greater then 0."
);
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchors
.
size
()
/
2
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gt
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gt
[
2
],
5
,
"Input(GTBox) dim[2] should be 5"
);
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
],
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dim_out
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
Yolov3LossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of [N, C, H, W]"
);
AddOutput
(
"Out"
,
"The output yolo loss tensor, "
"This is a 2-D tensor with shape of [N, 1]"
);
AddAttr
<
int
>
(
"box_num"
,
"The number of boxes generated in each grid."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
truth boxes.
)DOC"
);
}
};
class
Yolov3LossOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
yolov3_loss
,
ops
::
Yolov3LossOp
,
ops
::
Yolov3LossOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
yolov3_loss_grad
,
ops
::
Yolov3LossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss
,
ops
::
Yolov3LossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/yolov3_loss_op.cu
0 → 100644
浏览文件 @
5d0b568e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
yolov3_loss
,
ops
::
Yolov3LossOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/yolov3_loss_op.h
0 → 100644
浏览文件 @
5d0b568e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
Array2
=
Eigen
::
DSizes
<
int64_t
,
2
>
;
using
Array4
=
Eigen
::
DSizes
<
int64_t
,
4
>
;
template
<
typename
T
>
static
inline
bool
isZero
(
T
x
)
{
return
abs
(
x
)
<
1e-6
;
}
template
<
typename
T
>
static
inline
T
sigmod
(
T
x
)
{
return
1.0
/
(
exp
(
-
1.0
*
x
)
+
1.0
);
}
template
<
typename
T
>
static
inline
T
CalcMSEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
T
>::
Flatten
(
mask
);
auto
result
=
((
x_t
-
y_t
)
*
mask_t
).
pow
(
2
).
sum
().
eval
();
return
result
(
0
);
}
template
<
typename
T
>
static
inline
T
CalcBCEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
T
>::
Flatten
(
mask
);
auto
result
=
((
y_t
*
(
x_t
.
log
())
+
(
1.0
-
y_t
)
*
((
1.0
-
x_t
).
log
()))
*
mask_t
)
.
sum
()
.
eval
();
return
result
;
}
template
<
typename
T
>
static
inline
T
CalcCEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
T
>::
Flatten
(
mask
);
}
template
<
typename
T
>
static
void
CalcPredResult
(
const
Tensor
&
input
,
Tensor
*
pred_boxes
,
Tensor
*
pred_confs
,
Tensor
*
pred_classes
,
Tensor
*
pred_x
,
Tensor
*
pred_y
,
Tensor
*
pred_w
,
Tensor
*
pred_h
,
std
::
vector
<
int
>
anchors
,
const
int
class_num
,
const
int
stride
)
{
const
int
n
=
input
.
dims
()[
0
];
const
int
c
=
input
.
dims
()[
1
];
const
int
h
=
input
.
dims
()[
2
];
const
int
w
=
input
.
dims
()[
3
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
const
int
box_attr_num
=
5
+
class_num
;
auto
input_t
=
EigenTensor
<
T
,
4
>::
From
(
input
);
auto
pred_boxes_t
=
EigenTensor
<
T
,
5
>::
From
(
*
pred_boxes
);
auto
pred_confs_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_confs
);
auto
pred_classes_t
=
EigenTensor
<
T
,
5
>::
From
(
*
pred_classes
);
auto
pred_x_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_x
);
auto
pred_y_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_y
);
auto
pred_w_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_w
);
auto
pred_h_t
=
EigenTensor
<
T
,
4
>::
From
(
*
pred_h
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
float
an_w
=
anchors
[
an_idx
*
2
]
/
stride
;
float
an_h
=
anchors
[
an_idx
*
2
+
1
]
/
stride
;
for
(
int
j
=
0
;
j
<
h
;
j
++
)
{
for
(
int
k
=
0
;
k
<
w
;
k
++
)
{
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
));
pred_y_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
));
pred_w_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
2
,
j
,
k
));
pred_h_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
3
,
j
,
k
));
pred_boxes_t
(
i
,
an_idx
,
j
,
k
,
0
)
=
pred_x_t
(
i
,
an_idx
,
j
,
k
)
+
k
;
pred_boxes_t
(
i
,
an_idx
,
j
,
k
,
1
)
=
pred_y_t
(
i
,
an_idx
,
j
,
k
)
+
j
;
pred_boxes_t
(
i
,
an_idx
,
j
,
k
,
2
)
=
exp
(
pred_w_t
(
i
,
an_idx
,
j
,
k
))
*
an_w
;
pred_boxes_t
(
i
,
an_idx
,
j
,
k
,
3
)
=
exp
(
pred_h_t
(
i
,
an_idx
,
j
,
k
))
*
an_h
;
pred_confs_t
(
i
,
an_idx
,
j
,
k
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
));
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
pred_classes_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
sigmod
(
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
));
}
}
}
}
}
}
template
<
typename
T
>
static
T
CalcBoxIoU
(
std
::
vector
<
T
>
box1
,
std
::
vector
<
T
>
box2
,
bool
center_mode
)
{
T
b1_x1
,
b1_x2
,
b1_y1
,
b1_y2
;
T
b2_x1
,
b2_x2
,
b2_y1
,
b2_y2
;
if
(
center_mode
)
{
b1_x1
=
box1
[
0
]
-
box1
[
2
]
/
2
;
b1_x2
=
box1
[
0
]
+
box1
[
2
]
/
2
;
b1_y1
=
box1
[
1
]
-
box1
[
3
]
/
2
;
b1_y2
=
box1
[
1
]
+
box1
[
3
]
/
2
;
b2_x1
=
box2
[
0
]
-
box2
[
2
]
/
2
;
b2_x2
=
box2
[
0
]
+
box2
[
2
]
/
2
;
b2_y1
=
box2
[
1
]
-
box2
[
3
]
/
2
;
b2_y2
=
box2
[
1
]
+
box2
[
3
]
/
2
;
}
else
{
b1_x1
=
box1
[
0
];
b1_x2
=
box1
[
1
];
b1_y1
=
box1
[
2
];
b1_y2
=
box1
[
3
];
b2_x1
=
box2
[
0
];
b2_x2
=
box2
[
0
];
b2_y1
=
box2
[
1
];
b2_y2
=
box2
[
1
];
}
T
b1_area
=
(
b1_x2
-
b1_x1
+
1.0
)
*
(
b1_y2
-
b1_y1
+
1.0
);
T
b2_area
=
(
b2_x2
-
b2_x1
+
1.0
)
*
(
b2_y2
-
b2_y1
+
1.0
);
T
inter_rect_x1
=
std
::
max
(
b1_x1
,
b2_x1
);
T
inter_rect_y1
=
std
::
max
(
b1_y1
,
b2_y1
);
T
inter_rect_x2
=
std
::
min
(
b1_x2
,
b2_x2
);
T
inter_rect_y2
=
std
::
min
(
b1_y2
,
b2_y2
);
T
inter_area
=
std
::
max
(
inter_rect_x2
-
inter_rect_x1
+
1.0
,
0.0
)
*
std
::
max
(
inter_rect_y2
-
inter_rect_y1
+
1.0
,
0.0
);
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
+
1e-16
);
}
template
<
typename
T
>
static
inline
int
GetPredLabel
(
const
Tensor
&
pred_classes
,
int
n
,
int
best_an_index
,
int
gj
,
int
gi
)
{
auto
pred_classes_t
=
EigenTensor
<
T
,
5
>::
From
(
pred_classes
);
T
score
=
0.0
;
int
label
=
-
1
;
for
(
int
i
=
0
;
i
<
pred_classes
.
dims
()[
4
];
i
++
)
{
if
(
pred_classes_t
(
n
,
best_an_index
,
gj
,
gi
,
i
)
>
score
)
{
score
=
pred_classes_t
(
n
,
best_an_index
,
gj
,
gi
,
i
);
label
=
i
;
}
}
return
label
;
}
template
<
typename
T
>
static
void
CalcPredBoxWithGTBox
(
const
Tensor
&
pred_boxes
,
const
Tensor
&
pred_confs
,
const
Tensor
&
pred_classes
,
const
Tensor
&
gt_boxes
,
std
::
vector
<
int
>
anchors
,
const
float
ignore_thresh
,
const
int
img_height
,
int
*
gt_num
,
int
*
correct_num
,
Tensor
*
mask_true
,
Tensor
*
mask_false
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_boxes
.
dims
()[
0
];
const
int
b
=
gt_boxes
.
dims
()[
1
];
const
int
grid_size
=
pred_boxes
.
dims
()[
1
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
pred_boxes_t
=
EigenTensor
<
T
,
5
>::
From
(
pred_boxes
);
auto
pred_confs_t
=
EigenTensor
<
T
,
4
>::
From
(
pred_confs
);
auto
pred_classes_t
=
EigenTensor
<
T
,
5
>::
From
(
pred_classes
);
auto
gt_boxes_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_boxes
);
auto
mask_true_t
=
EigenTensor
<
int
,
4
>::
From
(
*
mask_true
).
setConstant
(
0.0
);
auto
mask_false_t
=
EigenTensor
<
int
,
4
>::
From
(
*
mask_false
).
setConstant
(
1.0
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
auto
th_t
=
EigenTensor
<
T
,
4
>::
From
(
*
th
).
setConstant
(
0.0
);
auto
tconf_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tconf
).
setConstant
(
0.0
);
auto
tclass_t
=
EigenTensor
<
T
,
5
>::
From
(
*
tclass
).
setConstant
(
0.0
);
*
gt_num
=
0
;
*
correct_num
=
0
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
if
(
isZero
(
gt_boxes_t
(
i
,
j
,
0
))
&&
isZero
(
gt_boxes_t
(
i
,
j
,
1
))
&&
isZero
(
gt_boxes_t
(
i
,
j
,
2
))
&&
isZero
(
gt_boxes_t
(
i
,
j
,
3
)))
{
continue
;
}
*
(
gt_num
)
++
;
int
gt_label
=
gt_boxes_t
(
i
,
j
,
0
);
T
gx
=
gt_boxes_t
(
i
,
j
,
1
);
T
gy
=
gt_boxes_t
(
i
,
j
,
2
);
T
gw
=
gt_boxes_t
(
i
,
j
,
3
);
T
gh
=
gt_boxes_t
(
i
,
j
,
4
);
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
T
max_iou
=
static_cast
<
T
>
(
-
1
);
T
iou
;
int
best_an_index
=
-
1
;
std
::
vector
<
T
>
gt_box
({
0
,
0
,
gw
,
gh
});
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
std
::
vector
<
T
>
anchor_shape
({
0
,
0
,
static_cast
<
T
>
(
anchors
[
2
*
an_idx
]),
static_cast
<
T
>
(
anchors
[
2
*
an_idx
+
1
])});
iou
=
CalcBoxIoU
(
gt_box
,
anchor_shape
,
false
);
if
(
iou
>
max_iou
)
{
max_iou
=
iou
;
best_an_index
=
an_idx
;
}
if
(
iou
>
ignore_thresh
)
{
mask_false_t
(
b
,
an_idx
,
gj
,
gi
)
=
0
;
}
}
mask_true_t
(
b
,
best_an_index
,
gj
,
gi
)
=
1
;
mask_false_t
(
b
,
best_an_index
,
gj
,
gi
)
=
1
;
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]
+
1e-16
);
th_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]
+
1e-16
);
tclass_t
(
b
,
best_an_index
,
gj
,
gi
,
gt_label
)
=
1
;
tconf_t
(
b
,
best_an_index
,
gj
,
gi
)
=
1
;
std
::
vector
<
T
>
pred_box
({
pred_boxes_t
(
i
,
best_an_index
,
gj
,
gi
,
0
),
pred_boxes_t
(
i
,
best_an_index
,
gj
,
gi
,
1
),
pred_boxes_t
(
i
,
best_an_index
,
gj
,
gi
,
2
),
pred_boxes_t
(
i
,
best_an_index
,
gj
,
gi
,
3
),
});
gt_box
[
0
]
=
gx
;
gt_box
[
1
]
=
gy
;
iou
=
CalcBoxIoU
(
gt_box
,
pred_box
,
true
);
int
pred_label
=
GetPredLabel
<
T
>
(
pred_classes
,
i
,
best_an_index
,
gj
,
gi
);
T
score
=
pred_confs_t
(
i
,
best_an_index
,
gj
,
gi
);
if
(
iou
>
0.5
&&
pred_label
==
gt_label
&&
score
>
0.5
)
{
(
*
correct_num
)
++
;
}
}
}
mask_false_t
=
mask_true_t
-
mask_false_t
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_boxes
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
img_height
=
ctx
.
Attr
<
int
>
(
"img_height"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
const
float
stride
=
static_cast
<
float
>
(
img_height
)
/
h
;
Tensor
pred_x
,
pred_y
,
pred_w
,
pred_h
;
Tensor
pred_boxes
,
pred_confs
,
pred_classes
;
pred_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_boxes
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
4
},
ctx
.
GetPlace
());
pred_confs
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
pred_classes
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
CalcPredResult
<
T
>
(
*
input
,
&
pred_boxes
,
&
pred_confs
,
&
pred_classes
,
&
pred_x
,
&
pred_y
,
&
pred_w
,
&
pred_h
,
anchors
,
class_num
,
stride
);
Tensor
mask_true
,
mask_false
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
mask_true
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
mask_false
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
int
gt_num
=
0
;
int
correct_num
=
0
;
CalcPredBoxWithGTBox
<
T
>
(
pred_boxes
,
pred_confs
,
pred_classes
,
*
gt_boxes
,
anchors
,
ignore_thresh
,
img_height
,
&
gt_num
,
&
correct_num
,
&
mask_true
,
&
mask_false
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
T
loss_x
=
CalcMSEWithMask
<
T
>
(
pred_x
,
tx
,
mask_true
);
T
loss_y
=
CalcMSEWithMask
<
T
>
(
pred_y
,
ty
,
mask_true
);
T
loss_w
=
CalcMSEWithMask
<
T
>
(
pred_w
,
tw
,
mask_true
);
T
loss_h
=
CalcMSEWithMask
<
T
>
(
pred_h
,
th
,
mask_true
);
T
loss_conf_true
=
CalcBCEWithMask
<
T
>
(
pred_confs
,
tconf
,
mask_true
);
T
loss_conf_false
=
CalcBCEWithMask
<
T
>
(
pred_confs
,
tconf
,
mask_false
);
// T loss_class = CalcCEWithMask<T>()
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Yolov3LossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_input_t
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_output_t
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录