yolov3_loss_op.cc 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
14
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
15
#include "paddle/fluid/imperative/type_defs.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
32 33
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
34 35 36 37 38
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
39 40

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
41 42
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
43
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
44
    int anchor_num = anchors.size() / 2;
45 46
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
47
    auto class_num = ctx->Attrs().Get<int>("class_num");
48

D
dengkaipeng 已提交
49 50 51
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
52 53 54 55
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
56 57 58 59
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
D
dengkaipeng 已提交
60
                      "Input(GTLabel) should be a 2-D tensor");
D
dengkaipeng 已提交
61 62 63 64
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
65 66 67 68
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
69 70 71 72 73
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
74 75 76
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

77 78 79 80 81 82 83 84 85 86 87 88
    if (ctx->HasInput("GTScore")) {
      auto dim_gtscore = ctx->GetInputDim("GTScore");
      PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
                        "Input(GTScore) should be a 2-D tensor");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[0], dim_gtbox[0],
          "Input(GTBox) and Input(GTScore) dim[0] should be same");
      PADDLE_ENFORCE_EQ(
          dim_gtscore[1], dim_gtbox[1],
          "Input(GTBox) and Input(GTScore) dim[1] should be same");
    }

89
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
90
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
91 92 93 94 95 96

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
97 98 99 100 101
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
102 103 104
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
105 106 107 108 109 110 111
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
112
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
113
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
114
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
115
             "box locations, confidence score and classification one-hot"
116
             "keys of each anchor box");
117 118 119 120
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
121 122
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
123 124 125 126 127
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
128
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
129
             "box class id.");
130 131 132 133
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
134 135
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
136 137
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
138
              "This is a 1-D tensor with shape of [N]");
139 140 141 142 143 144
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
145
              "This is an intermediate tensor with shape of [N, B], "
146 147 148
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
149 150

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
151 152
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
153 154 155 156 157 158
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
159
    AddAttr<int>("downsample_ratio",
160 161 162 163
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
164
    AddAttr<float>("ignore_thresh",
165 166
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
167 168
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
169
        .SetDefault(true);
170
    AddComment(R"DOC(
171
         This operator generates yolov3 loss based on given predict result and ground
172
         truth boxes.
173 174
         
         The output of previous network is in shape [N, C, H, W], while H and W
175
         should be the same, H and W specify the grid size, each grid point predict 
T
tink2123 已提交
176 177
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
178 179 180 181
         dimension), C should be equal to S * (class_num + 5), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so in the 
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor box.
182

D
dengkaipeng 已提交
183 184
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
185 186

         $$
187 188 189 190 191 192
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
193
         b_w = p_w e^{t_w}
194 195
         $$
         $$
196 197 198
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
199
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
200
         and :math:`p_w, p_h` is specified by anchors.
201 202 203

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
D
dengkaipeng 已提交
204
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore 
205 206
         thresh, the confidence score loss of this anchor box will be ignored.

207 208 209 210
         Therefore, the yolov3 loss consists of three major parts: box location loss,
         objectness loss and classification loss. The L1 loss is used for 
         box coordinates (w, h), sigmoid cross entropy loss is used for box 
         coordinates (x, y), objectness loss and classification loss.
211

212 213
         Each groud truth box finds a best matching anchor box in all anchors. 
         Prediction of this anchor box will incur all three parts of losses, and
214 215 216
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

217 218
         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
219
         calculated as follows.
220 221 222 223

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
224

D
dengkaipeng 已提交
225
         Final loss will be represented as follows.
D
dengkaipeng 已提交
226 227

         $$
228 229
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
230
         $$
231 232 233

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
         target will be smoothed when calculating classification loss, target of 
D
dengkaipeng 已提交
234 235
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
236 237

         While :attr:`GTScore` is given, which means the mixup score of ground truth 
238
         boxes, all losses incured by a ground truth box will be multiplied by its 
239
         mixup score.
240 241 242 243 244 245 246 247 248
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
249 250
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
251 252 253 254 255 256
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

257
 protected:
258 259
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
260 261 262
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
263 264 265
  }
};

H
hong 已提交
266 267
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
268
 public:
H
hong 已提交
269
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
270 271

 protected:
H
hong 已提交
272 273
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
274
    op->SetType("yolov3_loss_grad");
H
hong 已提交
275 276 277 278 279 280 281
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
282

H
hong 已提交
283
    op->SetAttrMap(this->Attrs());
284

H
hong 已提交
285
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
286
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
287
    op->SetOutput(framework::GradVarName("GTLabel"), {});
288
    op->SetOutput(framework::GradVarName("GTScore"), {});
H
hong 已提交
289
    return std::unique_ptr<T>(op);
290 291 292
  }
};

293 294 295 296 297
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
H
hong 已提交
298 299
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>);
300
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
301 302 303 304
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);