yolov3_loss_op.cc 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
13

14
#include "paddle/fluid/framework/infershape_utils.h"
15
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
16
#include "paddle/fluid/imperative/type_defs.h"
17
#include "paddle/phi/core/infermeta_utils.h"
18
#include "paddle/phi/infermeta/backward.h"
19
#include "paddle/phi/infermeta/multiary.h"
20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
31 32 33
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
34 35 36 37 38 39 40
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
41
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
42
             "This is a 4-D tensor with shape of [N, C, H, W]."
T
tianshuo78520a 已提交
43
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
44
             "box locations, confidence score and classification one-hot"
45
             "keys of each anchor box");
46 47 48 49
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
T
tianshuo78520a 已提交
50 51
             "In the third dimension, stores x, y, w, h coordinates, "
             "x, y is the center coordinate of boxes and w, h is the "
D
dengkaipeng 已提交
52 53 54 55 56
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
57
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
58
             "box class id.");
59 60 61 62
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
63 64
             "augmentation.")
        .AsDispensable();
D
dengkaipeng 已提交
65 66
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
67
              "This is a 1-D tensor with shape of [N]");
68 69 70 71 72 73
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
D
dengkaipeng 已提交
74
              "This is an intermediate tensor with shape of [N, B], "
75 76 77
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
78 79

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
80 81
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
82 83 84 85 86 87
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
88
    AddAttr<int>("downsample_ratio",
89 90 91 92
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
93
    AddAttr<float>("ignore_thresh",
94 95
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
96 97
    AddAttr<bool>("use_label_smooth",
                  "Whether to use label smooth. Default True.")
98
        .SetDefault(true);
99 100 101 102
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
103
    AddComment(R"DOC(
104
         This operator generates yolov3 loss based on given predict result and ground
105
         truth boxes.
106

107
         The output of previous network is in shape [N, C, H, W], while H and W
108
         should be the same, H and W specify the grid size, each grid point predict
T
tink2123 已提交
109 110
         given number bounding boxes, this given number, which following will be represented as S,
         is specified by the number of anchor clusters in each scale. In the second dimension(the channel
111 112 113
         dimension), C should be equal to S * (class_num + 5), class_num is the object
         category number of source dataset(such as 80 in coco dataset), so in the
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
114
         also includes confidence score of the box and class one-hot key of each anchor box.
115

D
dengkaipeng 已提交
116 117
         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
         should be as follows:
118 119

         $$
120 121 122 123 124 125
         b_x = \\sigma(t_x) + c_x
         $$
         $$
         b_y = \\sigma(t_y) + c_y
         $$
         $$
126
         b_w = p_w e^{t_w}
127 128
         $$
         $$
129 130 131
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
132
         In the equation above, :math:`c_x, c_y` is the left top corner of current grid
133
         and :math:`p_w, p_h` is specified by anchors.
134 135

         As for confidence score, it is the logistic regression value of IoU between
136 137
         anchor boxes and ground truth boxes, the score of the anchor box which has
         the max IoU should be 1, and if the anchor box has IoU bigger than ignore
138 139
         thresh, the confidence score loss of this anchor box will be ignored.

140
         Therefore, the yolov3 loss consists of three major parts: box location loss,
141 142
         objectness loss and classification loss. The L1 loss is used for
         box coordinates (w, h), sigmoid cross entropy loss is used for box
143
         coordinates (x, y), objectness loss and classification loss.
144

145
         Each groud truth box finds a best matching anchor box in all anchors.
146
         Prediction of this anchor box will incur all three parts of losses, and
147 148 149
         prediction of anchor boxes with no GT box matched will only incur objectness
         loss.

150
         In order to trade off box coordinate losses between big boxes and small
151
         boxes, box coordinate losses will be mutiplied by scale weight, which is
D
dengkaipeng 已提交
152
         calculated as follows.
153 154 155 156

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
157

D
dengkaipeng 已提交
158
         Final loss will be represented as follows.
D
dengkaipeng 已提交
159 160

         $$
161 162
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
163
         $$
164 165

         While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
166
         target will be smoothed when calculating classification loss, target of
D
dengkaipeng 已提交
167 168
         positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
         negetive samples will be smoothed to :math:`1.0 / class\_num`.
169

170 171
         While :attr:`GTScore` is given, which means the mixup score of ground truth
         boxes, all losses incured by a ground truth box will be multiplied by its
172
         mixup score.
173 174 175 176 177 178 179 180
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

181
 protected:
182 183
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
184 185 186
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
187 188 189
  }
};

H
hong 已提交
190 191
template <typename T>
class Yolov3LossGradMaker : public framework::SingleGradOpMaker<T> {
192
 public:
H
hong 已提交
193
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
194 195

 protected:
196
  void Apply(GradOpPtr<T> op) const override {
197
    op->SetType("yolov3_loss_grad");
H
hong 已提交
198 199 200 201 202 203 204
    op->SetInput("X", this->Input("X"));
    op->SetInput("GTBox", this->Input("GTBox"));
    op->SetInput("GTLabel", this->Input("GTLabel"));
    op->SetInput("GTScore", this->Input("GTScore"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetInput("ObjectnessMask", this->Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", this->Output("GTMatchMask"));
205

H
hong 已提交
206
    op->SetAttrMap(this->Attrs());
207

H
hong 已提交
208
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
209 210 211
    op->SetOutput(framework::GradVarName("GTBox"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTLabel"), this->EmptyInputGrad());
    op->SetOutput(framework::GradVarName("GTScore"), this->EmptyInputGrad());
212 213 214
  }
};

215 216 217 218
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
219 220
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss,
                            Yolov3LossInferShapeFunctor,
221
                            PD_INFER_META(phi::YoloLossInferMeta));
222 223
DECLARE_INFER_SHAPE_FUNCTOR(yolov3_loss_grad,
                            Yolov3LossGradInferShapeFunctor,
224
                            PD_INFER_META(phi::YoloLossGradInferMeta));
225 226 227
REGISTER_OPERATOR(yolov3_loss,
                  ops::Yolov3LossOp,
                  ops::Yolov3LossOpMaker,
H
hong 已提交
228
                  ops::Yolov3LossGradMaker<paddle::framework::OpDesc>,
229 230
                  ops::Yolov3LossGradMaker<paddle::imperative::OpBase>,
                  Yolov3LossInferShapeFunctor);
231 232 233
REGISTER_OPERATOR(yolov3_loss_grad,
                  ops::Yolov3LossOpGrad,
                  Yolov3LossGradInferShapeFunctor);