optimizer.py 64.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26
    _current_expected_place,
27 28
    default_main_program,
    device_guard,
29
    in_dygraph_mode,
30 31
    name_scope,
)
32
from paddle.regularizer import L2Decay
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
197
        if framework.in_dygraph_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227 228 229 230 231
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
232

M
MRXLT 已提交
233
        self._dtype = None
L
Leo Chen 已提交
234 235
        # Infer the dtype form parameter
        if self._parameter_list:
236 237
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
238 239 240
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
241 242 243
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
244

M
MRXLT 已提交
245 246
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
247
        self._learning_rate_map = {}
M
MRXLT 已提交
248 249 250 251
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
252
        self._accumulators = defaultdict(lambda: {})
M
MRXLT 已提交
253 254 255
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
256
        self._param_device_map = {}
M
MRXLT 已提交
257
        self.clear_gradients = self.clear_grad
258 259
        self._default_dict = {
            'weight_decay': self.regularization,
260
            'grad_clip': self._grad_clip,
261 262 263 264 265 266 267 268
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
269

270
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
271
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
272 273
        self._use_multi_tensor = None

274
        self._param_dict = self._create_multi_tensor_dict()
275
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
276
        self._already_create_accumulater = set()
277

278 279 280 281 282 283 284 285
        # create master gradients' states
        self._create_master_grad_states()

    def _create_master_grad_states(self):
        # master gradients states
        self._master_grads = {}
        self._master_grad = False

286 287 288
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

289 290 291 292 293 294 295
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

296 297 298
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
299 300 301
    @framework.dygraph_only
    def state_dict(self):
        '''
302
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
303 304
        If the optimizer never be called(minimize function), the state_dict is empty.

305
        Args:
M
MRXLT 已提交
306 307 308 309
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
310

M
MRXLT 已提交
311 312 313 314
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
315
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
316 317 318 319 320 321 322 323 324

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
325 326 327 328
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
329
        # global step if use lr decay
330
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
331 332 333 334 335 336
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
337
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
338

339
        Args:
M
MRXLT 已提交
340 341 342
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
343

M
MRXLT 已提交
344 345 346 347 348
        Examples:
            .. code-block:: python

                import paddle

349
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
350

351 352
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
353

354
                scheduler = paddle.optimizer.lr.NoamDecay(
355 356 357 358 359 360
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
361

362
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
363 364 365
                adam.set_state_dict(opti_state_dict)

        '''
366
        if isinstance(self._learning_rate, LRScheduler):
367
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
368

369
        # NOTE: exclude learning rate scheduler's state from
370 371 372 373
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
374 375 376 377
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
378 379 380
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
381 382
                assert (
                    var_tmp.name in state_dict
383
                ), f"optimizer Tensor {var_tmp.name} not found"
M
MRXLT 已提交
384 385 386 387 388 389 390
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
391
                    load_para_np = np.array(load_para)
W
wanghuancoder 已提交
392
                elif isinstance(load_para, core.eager.Tensor):
393
                    load_para_np = np.array(load_para)
M
MRXLT 已提交
394 395 396
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
397 398 399 400 401 402 403 404 405 406 407
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
408

409 410 411 412 413
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
414 415 416 417 418 419 420

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
421 422 423 424 425 426
        def do_create():
            # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
            _lr_dtype = (
                paddle.get_default_dtype()
                if self._dtype is None
                else self._dtype
427
            )
428 429 430 431 432 433 434 435 436 437 438
            _lr_dtype = (
                paddle.float32
                if (
                    (
                        paddle.get_default_dtype() != "float16"
                        and _lr_dtype == paddle.float16
                    )
                    or (
                        paddle.get_default_dtype() != "bfloat16"
                        and _lr_dtype == paddle.bfloat16
                    )
439
                )
440
                else _lr_dtype
441
            )
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            if isinstance(self._learning_rate, LRScheduler):
                lr_var = self._global_learning_rate()
                # only create global lr_var once
                if not isinstance(lr_var, framework.Variable):
                    lr_name = unique_name.generate('learning_rate')
                    self._learning_rate._var_name = lr_name
                    lr_var = self.helper.create_global_variable(
                        name=lr_name,
                        shape=[],
                        persistable=True,
                        stop_gradient=True,
                        dtype=_lr_dtype,
                    )
                    main_prog = framework.default_main_program()
                    main_prog.lr_scheduler = self._learning_rate
                    main_prog.lr_var = lr_var

                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = lr_var

                lr_value = float(self._learning_rate())
                self.helper.set_variable_initializer(
                    lr_var,
                    initializer=paddle.nn.initializer.Constant(value=lr_value),
467
                )
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            elif isinstance(self._learning_rate, float):
                # only create global lr_var once
                lr = self._global_learning_rate()
                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = paddle.static.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[],
                        value=float(self._learning_rate),
                        dtype=_lr_dtype,
                        persistable=True,
                    )

        with paddle.fluid.framework.dygraph_guard_if_declarative():
            do_create()
M
MRXLT 已提交
486 487 488 489 490

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
491

492
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
493 494 495
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
496
            value (float): the value of learning rate
M
MRXLT 已提交
497 498 499

        Returns:
            None
500

M
MRXLT 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
523
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
524
            raise TypeError(
525
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
526 527
                % (type(value))
            )
528
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
529
            raise RuntimeError(
530
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
531
            )
532 533 534
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
535 536
            if in_dygraph_mode():
                place = _current_expected_place()
537 538 539 540 541 542 543
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
544 545
            else:
                global_block = framework.default_main_program().global_block()
546 547 548 549 550 551 552 553 554 555
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
556 557 558

    def get_lr(self):
        """
559
        Get current learning rate of optimizer.
560 561
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
562

M
MRXLT 已提交
563
        Returns:
564
            float: The current learning rate of optimizer.
M
MRXLT 已提交
565 566 567 568

        Examples:
            .. code-block:: python

569
                # train on default dynamic graph mode
M
MRXLT 已提交
570
                import paddle
571 572 573 574 575 576 577 578 579 580 581
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
582

583 584 585 586 587 588 589 590
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
591
                    adam.step()
592
                    scheduler.step()
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
612 613 614 615 616

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
617
            return self._learning_rate()
M
MRXLT 已提交
618 619 620 621 622 623 624 625 626 627 628

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
629
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
630 631 632 633 634 635 636
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
637 638 639 640
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
641
            else:
642 643 644 645
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
646 647
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
648 649 650
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
651

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    def _create_master_grad(self, grad):
        assert self._is_dtype_fp16_or_bf16(grad.dtype)
        if grad.name in self._master_grads:
            var = self._master_grads[grad.name]
        else:
            var_name = grad.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = grad.block.create_var(
                name=var_name,
                shape=grad.shape,
                value=0,
                dtype='float32',
                lod_level=grad.lod_level,
                persistable=grad.persistable,
                is_data=grad.is_data,
            )
            self._master_grads[grad.name] = var
        return var

M
MRXLT 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

721 722 723 724 725 726 727 728 729 730
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
731 732 733 734 735 736 737 738 739 740 741
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
742 743 744 745
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
746
            if framework.in_dygraph_mode():
M
MRXLT 已提交
747
                return self._accumulators[name][param.name]
748 749
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
750 751 752
                    name, param.name
                )
            )
753
        if shape is None:
M
MRXLT 已提交
754 755 756 757 758 759 760 761 762 763 764
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
765
            type=core.VarDesc.VarType.LOD_TENSOR,
M
MRXLT 已提交
766
            shape=shape,
767 768
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
769 770
        if device is None:
            device = self._get_device_for_param(param.name)
771

W
wanghuancoder 已提交
772 773 774 775
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
776 777 778 779 780 781 782
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
783
            )
784 785 786
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
787 788 789 790
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
791
                )
M
MRXLT 已提交
792

793
        if framework.in_dygraph_mode():
M
MRXLT 已提交
794
            if len(self._accumulators_holder) > 0:
795 796 797 798 799
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
800
                var.set_value(self._accumulators_holder.pop(var_name))
M
MRXLT 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
817 818 819 820
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
821 822
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
823 824 825
                    name, param.name
                )
            )
M
MRXLT 已提交
826 827
        return self._accumulators[name][param.name]

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
856 857
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
858
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
859 860
                param_name = param_and_grad[0].name
                ops = target_block.ops
861 862
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
863 864 865 866 867
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
868 869
                            device_attr_name
                        )
M
MRXLT 已提交
870 871 872 873 874 875 876 877
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

878 879 880
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
908 909 910
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
911
            target_block = framework.default_main_program().blocks[
912 913
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
914 915 916

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
917

M
MRXLT 已提交
918 919
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
920 921
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
922 923
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
924
        ]:
925
            if (
926 927 928
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
929
            ):
930
                if isinstance(parameters_and_grads, list):
931
                    assert param_group_idx == 0
932 933 934 935 936 937 938
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
939
                        param_group_idx,
940
                    )
941 942
                else:
                    self._update_param_group(parameters_and_grads)
943 944 945 946 947 948 949
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
950
                        param_group_idx,
951
                    )
952
            if framework.in_dygraph_mode():
953
                self._append_optimize_multi_tensor_op(
954 955 956
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
957
                )
958
            else:
959 960 961
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
962 963 964
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
965
                for param_and_grad in parameters_and_grads:
966 967 968 969
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
970 971 972
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
973 974
                    param_grad_list
                ), name_scope("optimizer"):
975 976 977
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
978 979 980
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
981
                        )
982
        else:
983
            if not framework.in_dygraph_mode():
984 985 986 987 988 989 990 991
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
992

993
            if isinstance(parameters_and_grads, list):
994 995 996 997 998 999 1000 1001 1002
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                    )
1003
            else:
1004 1005
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
1006 1007
                    p[0]
                    for p in params_acc_dict['params']
1008 1009
                    if not p[0].stop_gradient
                ]
1010 1011
                with paddle.fluid.framework.dygraph_guard_if_declarative():
                    self._create_accumulators(target_block, params_acc_dict)
1012

1013
            if framework.in_dygraph_mode():
W
wanghuancoder 已提交
1014 1015 1016 1017
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
1018
                else:
W
wanghuancoder 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
1034
                                param_grad_dict = {}
W
wanghuancoder 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
1046 1047
            else:
                for param_and_grad in parameters_and_grads:
1048 1049
                    if param_and_grad[1] is None:
                        continue
1050
                    with param_and_grad[0].block.program._optimized_guard(
1051 1052
                        param_and_grad
                    ), name_scope("optimizer"):
1053
                        if param_and_grad[0].stop_gradient is False:
1054
                            device = self._get_device_for_param(
1055 1056
                                param_and_grad[0].name
                            )
1057 1058
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
1059 1060
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

1072 1073 1074 1075 1076 1077 1078 1079
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1105 1106
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1107
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1108
                # This can be any optimizer supported by dygraph.
1109
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1110
                                            parameters = linear.parameters())
1111
                out = linear(x)
M
MRXLT 已提交
1112 1113 1114 1115 1116
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
1117
        if framework.in_dygraph_mode():
M
MRXLT 已提交
1118 1119 1120 1121
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1122 1123 1124 1125
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1126
        if framework.in_dygraph_mode():
1127
            parameter_list = parameters if parameters else self._parameter_list
1128

1129 1130 1131 1132 1133 1134 1135
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1136 1137
        else:
            if callbacks is None:
1138
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1139
            else:
1140
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1141
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1142 1143
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
M
MRXLT 已提交
1144
                "Maybe that you should call paddle.mean to process the current loss.".format(
1145 1146 1147 1148
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1149
            with program_guard(program, startup_program):
1150
                from paddle.incubate.autograd.utils import prim_enabled
1151

1152
                if prim_enabled():
1153 1154 1155
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1156
                else:
1157 1158 1159
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1181
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1198
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1199 1200

        # Add regularization if any
1201 1202 1203
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1204 1205 1206 1207

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1208 1209 1210
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
1222
        if framework.in_dygraph_mode():
1223 1224 1225 1226
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1227 1228 1229
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1230
                    params_grads = self.append_regularization_ops(
1231 1232
                        params_grads, self.regularization
                    )
1233 1234 1235
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1236
                        params_grads['params'] = grad_clip(
1237 1238
                            params_grads['params']
                        )
1239

1240
                    params_grads['params'] = self.append_regularization_ops(
1241 1242
                        params_grads['params'], self.regularization
                    )
1243 1244 1245
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1246
        else:
1247
            assert param_group_idx == 0
M
MRXLT 已提交
1248 1249 1250 1251 1252
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1253
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1254
        """Create and add backward regularization Operators
1255

1256 1257 1258
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1259
        if grad is None or (
1260 1261 1262 1263 1264 1265
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1276
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1277
            return _C_ops.add_n([grad, regularization_term])
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1292

1293 1294 1295
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1296

1297
            return new_grad
1298

1299 1300 1301
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1302
        r"""Create and add backward regularization Operators
1303

1304 1305 1306 1307
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1308

1309 1310 1311 1312 1313
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1314

1315 1316 1317
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1318

1319 1320 1321 1322
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
1323
        if framework.in_dygraph_mode():
1324
            for param, grad in parameters_and_grads:
1325
                new_grad = self._create_regularization_of_grad(
1326 1327
                    param, grad, regularization
                )
1328 1329 1330 1331 1332
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1333 1334 1335 1336 1337
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1338 1339 1340 1341
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1342 1343
                            % regularization.__str__()
                        )
1344 1345
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1346 1347
                            param, grad, regularization
                        )
1348 1349 1350
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1351 1352 1353
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1354 1355 1356
        param_no_trainable = {
            param.name for param in parameters if param.stop_gradient is True
        }
M
MRXLT 已提交
1357 1358 1359 1360 1361
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1362
    @framework.non_static_only
1363
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1364 1365
        """
        Clear the gradients of all optimized parameters for model.
1366 1367

        If not, new gradient will accumulat on previous gradient.
1368 1369

        There are two method to clear grad: set_to_zero or delete grad.
1370

1371 1372
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1373

M
MRXLT 已提交
1374 1375
        Returns:
            None
1376

M
MRXLT 已提交
1377 1378 1379 1380
        Examples:
            .. code-block:: python

                import paddle
1381

1382
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1383
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1384
                # This can be any optimizer supported by dygraph.
1385
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1386 1387 1388 1389 1390 1391 1392
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1393
        param_list = []
1394
        if self._parameter_list is None or not isinstance(
1395 1396
            self._parameter_list[0], dict
        ):
1397 1398
            for p in self._parameter_list:
                if not p.stop_gradient:
1399
                    param_list.append(p)
1400 1401 1402 1403
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1404
                        param_list.append(p)
1405

1406 1407
        for p in param_list:
            p.clear_gradient(set_to_zero)
M
MRXLT 已提交
1408

1409
    @imperative_base.no_grad()
1410 1411 1412
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1431 1432
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1433 1434 1435 1436
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1437

M
MRXLT 已提交
1438
                import paddle
M
MRXLT 已提交
1439
                linear = paddle.nn.Linear(10, 10)
1440 1441
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1442 1443 1444 1445 1446 1447 1448 1449
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1450
                loss.backward()
M
MRXLT 已提交
1451 1452 1453
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1454 1455 1456
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1457
        parameter_list = parameters if parameters else self._parameter_list
1458

1459 1460 1461 1462 1463 1464
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1465

1466 1467 1468
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1469 1470 1471

        return optimize_ops, params_grads

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    def _declarative_step(self):
        """
        In declarative mode, we forward `call step` to `call apply_gradients`
        """
        params = (
            paddle.static.default_main_program().global_block().all_parameters()
        )
        assert not isinstance(
            self._parameter_list[0], dict
        ), "Only list of parameters is supported while using optimizer in @paddle.jit.static."
        selected_params = {param.name for param in self._parameter_list}
        parameters = [param for param in params if param.trainable]
        parameters = list(
            filter(
                lambda x: x.name in selected_params and hasattr(x, "grad"),
                parameters,
            )
        )
        params_grads = [(param, param.grad) for param in parameters]
        optimize_ops = self.apply_gradients(params_grads)
        return

1494
    @imperative_base.no_grad()
1495
    @framework.non_static_only
M
MRXLT 已提交
1496 1497
    def step(self):
        """
M
MRXLT 已提交
1498
        Execute the optimizer and update parameters once.
1499

M
MRXLT 已提交
1500 1501 1502 1503 1504 1505 1506
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1507

1508
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1509
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1510
                # This can be any optimizer supported by dygraph.
1511
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1512
                                        parameters = linear.parameters())
M
MRXLT 已提交
1513 1514 1515 1516 1517
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1518 1519 1520
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1531
            self._apply_optimize(
1532 1533 1534 1535
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1536
            )
1537 1538 1539

        else:
            # optimize parameters in groups
1540
            for idx, param_group in enumerate(self._param_groups):
1541
                params_grads = defaultdict(lambda: [])
1542 1543 1544 1545 1546 1547 1548
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1549 1550 1551
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1552 1553 1554 1555
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1556
                )
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1572 1573
                "but received set, please use list instead."
            )
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1587 1588
                "some parameters appear in more than one parameter group"
            )
1589 1590 1591 1592 1593 1594 1595 1596

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1597
            param.optimize_attr['learning_rate'] = param_group.get(
1598 1599
                'learning_rate', 1.0
            )
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1611 1612

    @framework.dygraph_only
1613
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1625
    def _append_optimize_multi_tensor_op(
1626
        self, target_block, parameters_and_grads, param_group_idx
1627
    ):
1628
        """
1629 1630 1631
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )