loss.py 154.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import paddle
17
from paddle import _C_ops, _legacy_C_ops, fluid, in_dynamic_mode
18
from paddle.framework import core
19
from paddle.utils import deprecated
20

21
from ...common_ops_import import Variable
22
from ...fluid.data_feeder import check_variable_and_dtype
姜永久 已提交
23
from ...fluid.framework import _current_expected_place, in_dygraph_mode
24 25
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
26

27 28
__all__ = []

29 30
kIgnoreIndex = -100

31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
94 95 96 97 98 99

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
100 101
        label, axis=reduce_dim
    )
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
144
        return _C_ops.log_loss(input, label, epsilon)
145 146 147 148 149 150 151

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

152 153 154 155 156 157
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
158 159 160
    return loss


161 162 163 164 165 166 167 168 169
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
170 171
    r"""

172 173
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
174 175 176 177 178 179
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

180 181 182
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
183 184 185 186 187 188 189
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
190
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
191 192 193 194

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
195
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
196 197 198 199

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
200 201 202
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
203 204 205 206 207 208

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
209 210 211
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
212 213 214 215 216
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
217
                                      if :attr:`soft_label` is set to :attr:`False`.
218 219 220
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
221 222 223
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
224 225 226 227 228
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
229
        axis (int, optional): The index of dimension to perform softmax calculations. It
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
245 246 247 248 249

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
250
            print(out)
251 252
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
253
    """
姜永久 已提交
254
    if in_dygraph_mode():
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        if core.is_compiled_with_custom_device("npu"):
            if not soft_label:
                valid_label = (
                    paddle.cast(label != ignore_index, dtype=label.dtype)
                    * label
                )
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
                    logits,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                    'use_softmax',
                    True,
                )
            else:
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
                    logits,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                    'use_softmax',
                    True,
                )
290
        else:
姜永久 已提交
291 292 293 294 295 296 297 298 299
            softmax, loss = _C_ops.cross_entropy_with_softmax(
                logits,
                label,
                soft_label,
                True,
                numeric_stable_mode,
                ignore_index,
                axis,
            )
300 301 302 303
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
304 305 306 307 308 309 310 311 312 313
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
314

姜永久 已提交
315 316 317 318 319 320 321
        outputs = {'Softmax': softmax, 'Loss': loss}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
322

姜永久 已提交
323 324
        if return_softmax:
            return loss, softmax
325

姜永久 已提交
326
        return loss
327 328 329


def npair_loss(anchor, positive, labels, l2_reg=0.002):
330 331
    """

332 333 334
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
335

336 337
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
338

339
    Args:
340
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
341
                        the data type is float32 or float64.
342
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
343 344 345 346
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

347

348 349
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
350

351 352 353
    Examples:

      .. code-block:: python
354

355
          import paddle
356

357
          DATATYPE = "float32"
358

359 360 361
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
362

363 364
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
365

366
    """
S
supplyout 已提交
367 368 369 370
    if anchor.size == 0:
        raise ValueError("The dims of anchor should be greater than 0.")
    if positive.size == 0:
        raise ValueError("The dims of positive should be greater than 0.")
371 372 373 374 375 376 377 378 379
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
380 381 382 383 384 385
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

386 387 388
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
389 390
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

391 392 393
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
394 395
    l2loss = l2loss * Beta * l2_reg

396 397 398 399 400 401
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
425 426
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
427 428 429 430 431 432 433 434 435 436 437 438 439

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
440
    if in_dygraph_mode():
441 442
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
443
        return square_out
姜永久 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
458

姜永久 已提交
459 460 461 462 463 464 465 466 467
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
468 469


470 471 472 473 474 475 476 477
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
511 512 513
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
543

544 545 546 547 548 549 550
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

551 552 553 554 555 556
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
557 558
        input = erased_input

559 560 561 562 563 564
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
565 566
        label = erased_label

Z
zhiboniu 已提交
567
    if in_dygraph_mode():
568 569 570
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
571

572 573
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
574 575 576 577 578 579 580 581
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
582 583 584 585 586 587
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
588 589 590 591

    return edit_distance_out, sequence_num


592 593 594
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
595
    """
学渣戊's avatar
学渣戊 已提交
596
    Measure the binary_cross_entropy loss between input predictions ``input``
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
645
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
646 647 648 649 650 651 652
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

653 654
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
655
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
656
            print(output)  # [0.65537095]
657 658 659 660 661

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
662 663 664
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
665

J
Jiabin Yang 已提交
666
    if in_dygraph_mode():
667
        out = _C_ops.bce_loss(input, label)
668
        if weight is not None:
669
            out = _C_ops.multiply(out, weight, 'axis', -1)
670 671

        if reduction == 'sum':
672
            return _C_ops.sum(out, [], None, False)
673

674
        elif reduction == 'mean':
675
            return _C_ops.mean_all(out)
676 677 678
        else:
            return out
    else:
姜永久 已提交
679 680 681 682 683 684
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
        )
J
Jiabin Yang 已提交
685

姜永久 已提交
686 687 688 689 690 691 692 693 694 695 696
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
697

姜永久 已提交
698 699 700 701
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
702
            else:
姜永久 已提交
703 704 705 706 707 708 709 710 711 712
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
713 714


715 716 717
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
718
    r"""
学渣戊's avatar
学渣戊 已提交
719
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
720 721 722 723 724 725 726

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
727
    Firstly, calculate loss function as follows:
728 729

    .. math::
730
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
731

732
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
733 734

    .. math::
735
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
736

N
Noel 已提交
737
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
738 739 740
    we reformulate the loss as follows:

    .. math::
741
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
742

学渣戊's avatar
学渣戊 已提交
743
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
744 745 746 747
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
748 749
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
778
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
779 780 781 782 783 784 785
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
786

787 788
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
789
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
790
            print(output)  # [0.45618808]
791 792 793 794 795 796

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
797 798
            % reduction
        )
799

800
    if in_dygraph_mode():
801 802 803
        one = _C_ops.full(
            [1],
            float(1.0),
804
            logit.dtype,
805 806 807 808 809
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
810
        if pos_weight is not None:
811
            log_weight = _C_ops.add(
812 813
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
814
            out = _C_ops.multiply(out, log_weight)
815
        if weight is not None:
816
            out = _C_ops.multiply(out, weight)
817 818

        if reduction == "sum":
819
            return _C_ops.sum(out, [], None, False)
820
        elif reduction == "mean":
821
            return _C_ops.mean_all(out)
H
hong 已提交
822
        else:
823
            return out
姜永久 已提交
824
    else:
825
        check_variable_and_dtype(
姜永久 已提交
826 827
            logit,
            'logit',
828 829 830 831
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
832 833
            label,
            'label',
834 835 836
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
837 838 839
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
840

姜永久 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            log_weight = paddle.add(
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
            pos_weight_name = (
                name if reduction == 'none' and weight is None else None
            )
            out = paddle.multiply(out, log_weight, name=pos_weight_name)

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
883 884


885 886 887 888 889 890 891 892 893 894 895
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
896 897 898
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
899

900 901 902
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
903 904

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
905 906
    represents the number of classes or the size of word dict.

907 908 909 910
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
957 958 959 960 961
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
962 963 964
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
965 966 967 968
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
969 970

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
971 972 973 974
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
975
    """
L
Linjie Chen 已提交
976
    if num_classes < 2:
977
        raise ValueError(f'Expected num_classes >= 2 (got {num_classes})')
L
Linjie Chen 已提交
978

979
    if in_dygraph_mode():
980
        out, _, _ = _C_ops.hsigmoid_loss(
981 982
            input,
            label,
983 984
            weight,
            bias,
985 986 987 988 989 990
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
991
        return out
姜永久 已提交
992
    else:
993

994
        check_variable_and_dtype(
姜永久 已提交
995
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
996
        )
姜永久 已提交
997
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
998
        check_variable_and_dtype(
姜永久 已提交
999
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
1000
        )
姜永久 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
1013

姜永久 已提交
1014 1015 1016 1017 1018
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": is_sparse,
        }
1019

姜永久 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1041 1042


1043
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1044
    r"""
1045
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1046 1047 1048 1049 1050 1051
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1052
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1053 1054


1055
    where :math:`z_i` is given by:
1056 1057 1058

    .. math::

1059
        \mathop{z_i} = \left\{\begin{array}{rcl}
1060 1061 1062
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1076
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1077 1078 1079
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1080
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1081 1082

    Returns:
1083
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1084 1085 1086 1087 1088 1089

    Examples:
        .. code-block:: python

            import paddle

1090 1091
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1092
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1093
            print(output)
1094
            # [0.068004]
1095 1096
    """

1097
    if in_dygraph_mode():
1098
        out = _C_ops.huber_loss(input, label, delta)
1099
    else:
1100 1101 1102 1103 1104 1105
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
        )
1106 1107
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1108 1109
            dtype=helper.input_dtype()
        )
1110
        out = helper.create_variable_for_type_inference(
1111 1112 1113 1114 1115 1116 1117 1118
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1119 1120 1121 1122

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1123 1124
            " 'none', but received %s, which is not allowed." % reduction
        )
1125 1126 1127
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1128
        return paddle.mean(out)
1129
    elif reduction == 'sum':
1130
        return paddle.sum(out)
1131 1132


1133 1134 1135
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1136
    r"""
1137

1138
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1139

1140
    .. math::
1141
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1158
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1159 1160 1161 1162
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1163
    Returns:
1164
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1165 1166 1167 1168 1169

    Examples:

        .. code-block:: python

1170 1171
            import paddle

Z
Zhong Hui 已提交
1172 1173 1174
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1175
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1176
            print(loss) # [0.75]
1177
    """
1178 1179 1180
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1181 1182
            "received %s, which is not allowed." % reduction
        )
1183
    if in_dygraph_mode():
1184 1185
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1186 1187
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1188 1189
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1190
        if reduction == 'sum':
1191
            return _C_ops.sum(out, [], None, False)
1192
        elif reduction == 'mean':
1193
            return _C_ops.mean_all(out)
1194
        return out
姜永久 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1206

姜永久 已提交
1207 1208 1209
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1210

姜永久 已提交
1211 1212 1213 1214 1215 1216
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1217

姜永久 已提交
1218
        result_out = helper.create_variable_for_type_inference(input.dtype)
1219

姜永久 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1244 1245


1246
def l1_loss(input, label, reduction='mean', name=None):
1247
    r"""
1248

1249
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1250

1251
    If `reduction` set to ``'none'``, the loss is:
1252 1253

    .. math::
1254
        Out = \lvert input - label \rvert
1255

1256
    If `reduction` set to ``'mean'``, the loss is:
1257 1258

    .. math::
1259
        Out = MEAN(\lvert input - label \rvert)
1260

1261
    If `reduction` set to ``'sum'``, the loss is:
1262 1263

    .. math::
1264
        Out = SUM(\lvert input - label \rvert)
1265

1266

1267
    Parameters:
N
Noel 已提交
1268 1269
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1270
        reduction (str, optional): Indicate the reduction to apply to the loss,
1271
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1272 1273 1274
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1275 1276
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1277

1278
    Returns:
1279
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1280
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1281
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1282

1283 1284
    Examples:
        .. code-block:: python
N
Noel 已提交
1285

1286
            import paddle
1287

1288 1289
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1290

1291
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1292 1293 1294
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
1295

1296
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1297 1298 1299 1300
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1301

1302
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1303 1304 1305
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
1306

1307 1308 1309 1310
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1311 1312
            "received %s, which is not allowed." % reduction
        )
1313

1314
    if in_dygraph_mode():
1315 1316
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1317
        if reduction == 'mean':
1318
            return _C_ops.mean_all(unreduced)
1319
        elif reduction == 'sum':
1320
            return _C_ops.sum(unreduced, [], None, False)
1321 1322
        else:
            return unreduced
姜永久 已提交
1323 1324 1325 1326 1327 1328
    else:
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
1329
        )
1330

姜永久 已提交
1331 1332 1333 1334 1335 1336 1337 1338
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1339 1340 1341 1342 1343


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1344 1345
    """
    This api returns negative log likelihood.
1346 1347
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1359 1360
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1375

1376 1377 1378 1379
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1380 1381 1382 1383 1384
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1385
                log_out = log_softmax(input)
1386
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1387
                result = nll_loss(log_out, label)
1388
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1389 1390 1391 1392
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1393 1394
            "'none', but received %s, which is not allowed." % reduction
        )
1395 1396 1397

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1409
    if input_dims < 2:
1410
        raise ValueError(f'Expected 2 or more dimensions (got {input_dims})')
1411 1412 1413 1414 1415 1416 1417 1418

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1419 1420
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1421 1422
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1423 1424
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1425
            out_shape = [n] + input_shape[2:]
1426 1427 1428
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1429
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1430
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1431
        return out
姜永久 已提交
1432 1433 1434
    else:
        helper = LayerHelper('nll_loss', **locals())

1435
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1436 1437
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1438
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1439

姜永久 已提交
1440 1441
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1442
        )
姜永久 已提交
1443 1444 1445 1446 1447 1448
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1449

姜永久 已提交
1450 1451 1452 1453 1454
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1455

姜永久 已提交
1456 1457 1458 1459 1460
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1461

姜永久 已提交
1462
        return out
1463 1464


1465
def kl_div(input, label, reduction='mean', name=None):
1466
    r"""
1467
    Calculate the Kullback-Leibler divergence loss
1468 1469 1470 1471 1472 1473 1474
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1475
    Here :math:`x` is input and :math:`y` is label.
1476

1477
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1478

1479
    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.
1480

1481
    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.
1482

1483
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1484 1485

    Args:
1486
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1487
            any number of additional dimensions. It's data type should be float32, float64.
1488
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1489 1490 1491 1492 1493 1494 1495
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1496
        name(str, optional): Name for the operation (optional, default is None). For more information,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1507

1508
            shape = (5, 20)
1509 1510
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1511

L
LielinJiang 已提交
1512
            # 'batchmean' reduction, loss shape will be [1]
1513
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1514
            # shape=[1]
1515

1516
            # 'mean' reduction, loss shape will be [1]
1517
            pred_loss = F.kl_div(x, target, reduction='mean')
1518 1519 1520
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1521
            pred_loss = F.kl_div(x, target, reduction='sum')
1522 1523 1524
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1525
            pred_loss = F.kl_div(x, target, reduction='none')
1526 1527 1528
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1529
    # ugly type promotion
1530 1531 1532 1533
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1534
        input = paddle.cast(input, 'float64')
1535 1536 1537 1538
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1539
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1540

1541
    if in_dygraph_mode():
1542
        out = _C_ops.kldiv_loss(input, label, 'none')
1543 1544 1545 1546 1547 1548 1549 1550 1551
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1552 1553
    else:
        helper = LayerHelper('kl_div', **locals())
1554

姜永久 已提交
1555 1556 1557 1558 1559 1560 1561
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1562

姜永久 已提交
1563 1564 1565 1566 1567 1568 1569
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1570

姜永久 已提交
1571 1572 1573 1574 1575 1576 1577 1578
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1579 1580


1581
def mse_loss(input, label, reduction='mean', name=None):
1582
    r"""
1583
    Accept input predications and label and returns the mean square error.
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1613
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1614

1615 1616 1617
    Examples:

        .. code-block:: python
1618

1619 1620
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1621 1622
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1623
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1624
            print(output)
1625 1626 1627 1628 1629 1630 1631
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1632 1633
            "but received {}.".format(reduction)
        )
1634

Z
zhiboniu 已提交
1635
    if not in_dynamic_mode():
1636 1637 1638 1639 1640 1641
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1642 1643

    if reduction == 'none':
1644
        return paddle.square(paddle.subtract(input, label), name=name)
1645
    elif reduction == 'mean':
1646 1647 1648
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1649
    else:
1650 1651 1652
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1653 1654


1655 1656 1657 1658 1659 1660 1661 1662 1663
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1664 1665
    """

1666 1667 1668
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1669 1670 1671
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1672
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1673 1674 1675
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1676 1677 1678
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1679

1680 1681
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1700
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1713 1714 1715 1716 1717 1718
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1719

1720 1721 1722 1723
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1724
                reduction='none')
1725 1726 1727
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1728

1729 1730 1731 1732 1733
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1734 1735 1736
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1737 1738 1739

    """

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
        if in_dygraph_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1757 1758
        else:
            helper = LayerHelper('warpctc', **locals())
1759
            check_variable_and_dtype(
姜永久 已提交
1760
                input, 'input', ['float32', 'float64'], "warpctc"
1761
            )
姜永久 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1773

姜永久 已提交
1774 1775 1776 1777 1778 1779
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1780

姜永久 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1791 1792

    loss_out = warpctc(
1793 1794
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1795

Z
zhiboniu 已提交
1796
    loss_out = paddle.squeeze(loss_out, [-1])
1797 1798
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1799
        loss_out = paddle.mean(loss_out / label_lengths)
1800 1801 1802
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax, is the longest length of input logit sequence. The data type should be float32 or float64.
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
        if in_dygraph_mode():
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
1927 1928


1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
1940
    r"""
1941 1942
    .. math::

1943
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1944

1945
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1946 1947 1948 1949
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1950 1951 1952 1953
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1954 1955

    Args:
G
Guoxia Wang 已提交
1956
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1957
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1958 1959 1960 1961 1962
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1963
        group (Group, optional): The group instance return by paddle.distributed.new_group
1964 1965
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1966 1967 1968 1969 1970 1971 1972 1973
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1974 1975 1976 1977 1978 1979
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1980 1981 1982 1983

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1984
        :name: code-example1
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2033
        :name: code-example2
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2080
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2124
    if not (group is False or group is None or hasattr(group, 'is_member')):
2125 2126
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2127 2128 2129 2130
             (got group: {})'.format(
                group
            )
        )
2131 2132 2133
        return

    if hasattr(group, 'is_member') and not group.is_member():
2134 2135
        return

2136
    ring_id = 0
2137 2138
    rank = 0
    nranks = 1
2139
    if group is not False:
2140 2141 2142 2143
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2144 2145 2146 2147 2148
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2149
            nranks = parallel_env.world_size if group is None else group.nranks
2150 2151 2152 2153 2154

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2155
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2156
             (got input_dims{}, label_dims{})'.format(
2157 2158 2159
                input_dims, label_dims
            )
        )
2160 2161 2162
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2163
    if in_dygraph_mode():
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2176 2177 2178 2179 2180 2181 2182 2183
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2184 2185 2186 2187 2188 2189 2190
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2191
            logits,
姜永久 已提交
2192 2193 2194
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2195
        )
姜永久 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2216 2217 2218 2219
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2220

2221 2222 2223 2224 2225 2226
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2227 2228 2229 2230
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2245
    r"""
2246 2247
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2248 2249 2250 2251 2252 2253
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2254 2255 2256
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2283 2284 2285
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2286 2287 2288 2289 2290
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2291
                                      if :attr:`soft_label` is set to :attr:`False`.
2292 2293 2294
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2295 2296 2297
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2298 2299 2300 2301 2302
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2303
        axis (int, optional): The index of dimension to perform softmax calculations. It
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2319 2320 2321 2322 2323

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2324
            print(out)
2325 2326
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2327
    """
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2350
    r"""
2351

2352
    By default, the cross entropy loss function is implemented using softmax. This function
2353 2354
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2355

2356
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2357

2358
    By default, calculate the mean of the result, and you can also affect
2359
    the default behavior by using the reduction parameter. Please refer to the part of
2360
    parameters for details.
2361

2362
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2363
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2364
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2365

2366
    The calculation includes the following two steps.
2367

2368
    - **1.softmax cross entropy**
2369

2370
        1. Hard label (each sample can only be assigned into one category)
2371

2372
        1.1. when use_softmax=True
2373

2374 2375
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2418
                \\loss_j=loss_j*weight[label_j]
2419

2420

2421 2422 2423 2424 2425 2426 2427
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2428
            2.1 if the ``reduction`` parameter is ``none``
2429 2430 2431

                Return the previous result directly

2432
            2.2 if the ``reduction`` parameter is ``sum``
2433 2434 2435 2436 2437 2438

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2439 2440
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2441

2442
            2.3.1. If the  ``weight``  parameter is ``None``
2443 2444 2445

                   Return the average value of the previous results

2446
            .. math::
2447 2448 2449 2450 2451 2452 2453 2454
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2455
            .. math::
2456
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2457 2458 2459

            2. Soft labels (soft_label = True)

2460
            .. math::
2461
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2462 2463


2464
    Parameters:
2465
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2466

2467
            Note:
2468
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2469
                2. when use_softmax=False, it expects the output of softmax operator.
2470

2471
        label (Tensor):
2472 2473 2474 2475
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2476
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2477 2478
            and the sum of the labels for each sample should be 1.

2479
        weight (Tensor, optional): a manual rescaling weight given to each class.
2480
            If given, has to be a Tensor of size C and the data type is float32, float64.
2481
            Default is ``'None'`` .
2482
        ignore_index (int64, optional): Specifies a target value that is ignored
2483 2484
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2485
            Default is ``-100`` .
2486
        reduction (str, optional): Indicate how to average the loss by batch_size,
2487 2488
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2489
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2490 2491
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2492 2493
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2494 2495
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2496
            Default is ``-1`` .
2497
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2498
            Default is ``True``.
2499
        name (str, optional): The name of the operator. Default is ``None`` .
2500
            For more information, please refer to :ref:`api_guide_Name` .
2501 2502 2503

    Returns:

2504 2505
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2506

2507
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2508

2509
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2510

2511
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2512

2513
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2514

2515
    Examples:
2516
        .. code-block:: python
2517 2518

            # hard labels
2519 2520 2521 2522 2523
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2524
            input =  paddle.rand([N, C], dtype='float64')
2525
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2526 2527
            weight = paddle.rand([C], dtype='float64')

2528 2529 2530
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2531 2532 2533 2534 2535
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
2536 2537

        .. code-block:: python
2538 2539

            # soft labels
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2553 2554 2555 2556 2557 2558 2559 2560 2561
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
C
Chen Long 已提交
2562

2563 2564 2565 2566
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2567 2568
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2569 2570
            % reduction
        )
2571
    if ignore_index > 0 and soft_label:
2572 2573
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2574 2575 2576
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2577

2578
    input_dims = len(list(input.shape))
2579 2580 2581
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2582 2583 2584
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2585

2586
    if in_dygraph_mode():
2587
        if not soft_label:
2588 2589 2590
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2591 2592 2593
        if core.is_compiled_with_custom_device(
            "npu"
        ) or core.is_compiled_with_custom_device("mlu"):
2594
            if not soft_label:
2595
                _, out = _legacy_C_ops.softmax_with_cross_entropy(
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2609
            else:
2610
                _, out = _legacy_C_ops.softmax_with_cross_entropy(
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2624
        else:
2625 2626 2627
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2628 2629 2630 2631

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2632
            if soft_label:
2633 2634 2635 2636
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2637 2638 2639 2640 2641 2642
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2643 2644 2645 2646
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2647
                out = _C_ops.multiply(out, weight_gather_reshape)
2648 2649 2650 2651 2652
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2665
                    # TODO: Temporarily use squeeze instead of squeeze_
2666 2667 2668
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2669
                if axis != -1 and axis != valid_label.ndim - 1:
2670 2671 2672 2673 2674 2675 2676 2677 2678
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2679
                    weight_gather = _C_ops.gather_nd(
2680 2681
                        weight, valid_label.transpose(temp_perm)
                    )
2682
                else:
2683
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2684 2685 2686
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2687
                input_shape = list(label.shape)
2688 2689 2690
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2691
                out = paddle.cast(out, weight_gather_reshape.dtype)
2692
                out = _C_ops.multiply(out, weight_gather_reshape)
2693 2694 2695 2696 2697

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2698
            return _C_ops.sum(out, [], None, False)
2699 2700 2701 2702 2703 2704 2705
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2706 2707 2708
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2709
                out_sum = _C_ops.sum(out, [], None, False)
2710 2711 2712 2713 2714
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2715
                    count = _C_ops.sum(mask, [], None, False)
2716 2717 2718
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2719 2720 2721
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2722
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2723 2724 2725
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2726
                out_sum = _C_ops.sum(out, [], None, False)
2727 2728 2729
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2730 2731
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2732
                return _C_ops.mean_all(out)
2733 2734 2735 2736 2737 2738

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2770

2771
        if weight is not None:
姜永久 已提交
2772 2773 2774 2775 2776 2777 2778
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2779
            if soft_label:
2780
                # chajchaj:
姜永久 已提交
2781
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2782
                # weight's shape is C, where C is class num.
2783 2784
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2785 2786 2787 2788 2789 2790
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2791

2792 2793 2794 2795
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2796 2797 2798 2799
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2800 2801 2802 2803 2804
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2805 2806 2807
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2808
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2809
                    (label != ignore_index), input.dtype
2810 2811 2812 2813 2814 2815 2816 2817
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2818
                if axis != -1 and axis != valid_label.ndim - 1:
2819 2820 2821 2822 2823 2824 2825 2826 2827
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2828 2829
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2830
                    )
2831
                else:
姜永久 已提交
2832 2833
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2834 2835
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2836

2837
                input_shape = list(label.shape)
2838 2839 2840
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2841
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2842

2843
        if reduction == "sum":
姜永久 已提交
2844
            return paddle.sum(out, name=name)
2845
        elif reduction == "mean":
姜永久 已提交
2846 2847
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2848 2849 2850
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2851
                mask = label != ignore_index
2852
                if weight is None:
2853
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2854
                    count = paddle.sum(mask, name=name)
2855
                    ret = out_sum / (count + (count == 0.0))
2856 2857
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2858
                    weight_ignored = paddle.multiply(
2859 2860
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2861
                    weight_sum = paddle.sum(weight_ignored, name=name)
2862
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2863 2864
                return ret
            elif weight is not None:
姜永久 已提交
2865 2866
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2867
                return out_sum / (total_weight + (total_weight == 0.0))
2868
            else:
姜永久 已提交
2869 2870
                return paddle.mean(out, name=name)

2871
        else:
2872 2873 2874
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2875
            return out
2876 2877


2878 2879 2880 2881 2882 2883 2884 2885 2886
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2887
    r"""
2888 2889 2890 2891 2892 2893
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2894
    This operator measures focal loss function as follows:
2895 2896

    .. math::
2897
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2898

2899
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2900 2901 2902 2903 2904

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2905
           Out = \frac{Out}{normalizer}
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
2922 2923
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
2924 2925
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2926
            it should be between 0 and 1.  Default value is set to 0.25.
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2951
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2952
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2953
            print(output)  # [0.65782464]
2954 2955 2956 2957 2958 2959

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2960 2961
            % reduction
        )
2962 2963

    if normalizer is not None:
2964 2965 2966 2967 2968 2969
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
2970 2971 2972 2973
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2974
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
2975 2976 2977
                    normalizer_dims
                )
            )
2978

2979 2980
    if in_dygraph_mode():
        place = _current_expected_place()
2981
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2982

2983 2984 2985
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
2986

2987
        pred = _C_ops.sigmoid(logit)
2988

2989 2990
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
2991 2992 2993 2994
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
2995 2996

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2997 2998
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
2999 3000 3001 3002
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3003
        loss = _C_ops.multiply(alpha_t, loss)
3004 3005

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3006 3007
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3008 3009

        if normalizer is not None:
3010
            loss = _C_ops.divide(loss, normalizer)
3011 3012

        if reduction == "sum":
3013
            return _C_ops.sum(loss, [], None, False)
3014
        elif reduction == "mean":
3015
            return _C_ops.mean_all(loss)
3016 3017 3018

        return loss

姜永久 已提交
3019 3020 3021
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3022
        )
姜永久 已提交
3023 3024
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3025
        )
3026

姜永久 已提交
3027 3028 3029 3030 3031
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, reduction='none', name=bce_name
3032
        )
3033

姜永久 已提交
3034 3035
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3036

姜永久 已提交
3037 3038
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3039

姜永久 已提交
3040 3041
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3042

姜永久 已提交
3043 3044 3045
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3046

姜永久 已提交
3047 3048 3049 3050
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3051

姜永久 已提交
3052
        return loss
3053 3054


3055 3056 3057
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3058
    r"""
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3087

3088 3089 3090 3091 3092
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3093

3094 3095
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3096

3097 3098
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3111 3112 3113 3114
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3115 3116
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3117 3118

    if not (input.shape == label.shape):
3119 3120 3121 3122
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3123

姜永久 已提交
3124
    if not in_dygraph_mode():
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3137

3138 3139 3140 3141
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3142 3143

    if weight is not None:
姜永久 已提交
3144
        if not in_dygraph_mode():
3145 3146 3147 3148 3149 3150
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3163 3164
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3165
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3240 3241
            "but received {}.".format(reduction)
        )
3242

姜永久 已提交
3243
    if not in_dygraph_mode():
3244 3245 3246 3247 3248 3249
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3250 3251

    zero_ = paddle.zeros([1], dtype=input.dtype)
3252 3253 3254
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3255 3256 3257 3258 3259 3260 3261

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3262 3263


3264 3265 3266
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3267
    r"""
3268
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3284 3285
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3286
                         Available dtypes are float32, float64.
3287
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3288
                         Available dtypes are float32, float64.
3289
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3327 3328
            "1D target tensor expected, multi-target not supported"
        )
3329 3330 3331 3332

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3333 3334
            "different sizes"
        )
3335 3336 3337 3338 3339 3340 3341 3342

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3343 3344
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3345
    if label.dtype not in [
3346 3347 3348 3349
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3373 3374


3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3404
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3420

3421 3422
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3423

Y
yangguohao 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3435

Y
yangguohao 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
3459 3460 3461 3462 3463
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3464 3465 3466 3467
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3468
    if not in_dygraph_mode():
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3487 3488

    if not (input.shape == positive.shape == negative.shape):
3489 3490 3491 3492 3493
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3494

3495 3496 3497
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3498
        else paddle.nn.PairwiseDistance(2)
3499
    )
Y
yangguohao 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3511 3512
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3522 3523


3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3611 3612
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3613 3614 3615 3616
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3617
    if not in_dygraph_mode():
3618 3619 3620 3621 3622 3623 3624 3625 3626
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3627 3628

    if not (input.shape == positive.shape == negative.shape):
3629 3630 3631 3632 3633
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3651 3652


3653 3654 3655 3656 3657 3658 3659 3660 3661
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3724 3725
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3726

姜永久 已提交
3727
    if not in_dygraph_mode():
3728 3729 3730 3731 3732 3733
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3734 3735 3736 3737
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3738 3739 3740
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3741 3742 3743
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
姜永久 已提交
3744
        if not in_dygraph_mode():
3745 3746 3747
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3748 3749 3750
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3751 3752 3753 3754
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3755 3756 3757
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3758 3759 3760 3761 3762
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3763
    else:
3764 3765 3766 3767 3768 3769 3770 3771 3772
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3782 3783
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3784

3785 3786 3787 3788 3789 3790 3791 3792
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3793
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3794
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3795
            Available dtype is float32, float64.
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3813
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [1].
3814 3815 3816 3817 3818 3819 3820 3821 3822

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3823 3824 3825 3826 3827 3828 3829
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3830 3831

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3832 3833 3834 3835 3836 3837 3838
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3839

3840 3841 3842 3843
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3844 3845 3846
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3847

姜永久 已提交
3848
    if not in_dygraph_mode():
3849
        fluid.data_feeder.check_variable_and_dtype(
3850 3851 3852 3853 3854 3855 3856 3857
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3858 3859

    if not (input.shape == label.shape):
3860
        raise ValueError("input's shape must equal to " "label's shape")
3861

3862
    label = paddle.cast(label, input.dtype)
3863 3864 3865 3866 3867 3868 3869 3870
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out