loss.py 155.1 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17 18
import paddle
import paddle.fluid as fluid
19
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
20
from paddle.framework import core
21
from paddle.utils import deprecated
22

23
from ...common_ops_import import Variable
24
from ...fluid.data_feeder import check_variable_and_dtype
姜永久 已提交
25
from ...fluid.framework import _current_expected_place, in_dygraph_mode
26 27
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import reshape
28

29 30
__all__ = []

31 32
kIgnoreIndex = -100

33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
96 97 98 99 100 101

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
102 103
        label, axis=reduce_dim
    )
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
146
        return _C_ops.log_loss(input, label, epsilon)
147 148 149 150 151 152 153

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

154 155 156 157 158 159
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
160 161 162
    return loss


163 164 165 166 167 168 169 170 171
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
172 173
    r"""

174 175
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
176 177 178 179 180 181
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

182 183 184
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
185 186 187 188 189 190 191
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
192
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
193 194 195 196

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
197
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
198 199 200 201

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
202 203 204
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
205 206 207 208 209 210

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
211 212 213
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
214 215 216 217 218
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
219
                                      if :attr:`soft_label` is set to :attr:`False`.
220 221 222
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
223 224 225
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
226 227 228 229 230
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
231
        axis (int, optional): The index of dimension to perform softmax calculations. It
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
247 248 249 250 251

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
252
            print(out)
253 254
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
255
    """
姜永久 已提交
256
    if in_dygraph_mode():
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        if core.is_compiled_with_custom_device("npu"):
            if not soft_label:
                valid_label = (
                    paddle.cast(label != ignore_index, dtype=label.dtype)
                    * label
                )
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
                    logits,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                    'use_softmax',
                    True,
                )
            else:
                softmax, loss = _legacy_C_ops.softmax_with_cross_entropy(
                    logits,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    numeric_stable_mode,
                    'axis',
                    axis,
                    'use_softmax',
                    True,
                )
292
        else:
姜永久 已提交
293 294 295 296 297 298 299 300 301
            softmax, loss = _C_ops.cross_entropy_with_softmax(
                logits,
                label,
                soft_label,
                True,
                numeric_stable_mode,
                ignore_index,
                axis,
            )
302 303 304 305
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
306 307 308 309 310 311 312 313 314 315
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
316

姜永久 已提交
317
        outputs = {'Softmax': softmax, 'Loss': loss}
318 319 320
        if core.is_compiled_with_custom_device(
            "npu"
        ) or core.is_compiled_with_custom_device("mlu"):
姜永久 已提交
321 322 323 324 325 326 327 328 329 330
            backprop = helper.create_variable_for_type_inference(
                dtype=logits.dtype
            )
            outputs['Backprop'] = backprop
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
331

姜永久 已提交
332 333
        if return_softmax:
            return loss, softmax
334

姜永久 已提交
335
        return loss
336 337 338


def npair_loss(anchor, positive, labels, l2_reg=0.002):
339 340
    """

341 342 343
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
344

345 346
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
347

348
    Args:
349
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
350
                        the data type is float32 or float64.
351
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
352 353 354 355
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

356

357 358
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
359

360 361 362
    Examples:

      .. code-block:: python
363

364
          import paddle
365

366
          DATATYPE = "float32"
367

368 369 370
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
371

372 373
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
374

375
    """
376 377 378 379 380 381 382 383 384
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
385 386 387 388 389 390
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

391 392 393
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
394 395
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

396 397 398
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
399 400
    l2loss = l2loss * Beta * l2_reg

401 402 403 404 405 406
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
430 431
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
432 433 434 435 436 437 438 439 440 441 442 443 444

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
445
    if in_dygraph_mode():
446 447
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
448
        return square_out
姜永久 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
463

姜永久 已提交
464 465 466 467 468 469 470 471 472
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
473 474


475 476 477 478 479 480 481 482
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
516 517 518
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
548

549 550 551 552 553 554 555
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

556 557 558 559 560 561
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
562 563
        input = erased_input

564 565 566 567 568 569
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
570 571
        label = erased_label

Z
zhiboniu 已提交
572
    if in_dygraph_mode():
573 574 575
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
576

577 578
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
579 580 581 582 583 584 585 586
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
587 588 589 590 591 592
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
593 594 595 596

    return edit_distance_out, sequence_num


597 598 599
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
600
    """
学渣戊's avatar
学渣戊 已提交
601
    Measure the binary_cross_entropy loss between input predictions ``input``
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
650
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
651 652 653 654 655 656 657
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

658 659
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
660
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
661
            print(output)  # [0.65537095]
662 663 664 665 666

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
667 668 669
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
670

J
Jiabin Yang 已提交
671
    if in_dygraph_mode():
672
        out = _C_ops.bce_loss(input, label)
673
        if weight is not None:
674
            out = _C_ops.multiply(out, weight, 'axis', -1)
675 676

        if reduction == 'sum':
677
            return _C_ops.sum(out, [], None, False)
678

679
        elif reduction == 'mean':
680
            return _C_ops.mean_all(out)
681 682 683
        else:
            return out
    else:
姜永久 已提交
684 685 686 687 688 689
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
        )
J
Jiabin Yang 已提交
690

姜永久 已提交
691 692 693 694 695 696 697 698 699 700 701
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
702

姜永久 已提交
703 704 705 706
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
707
            else:
姜永久 已提交
708 709 710 711 712 713 714 715 716 717
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
718 719


720 721 722
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
723
    r"""
学渣戊's avatar
学渣戊 已提交
724
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
725 726 727 728 729 730 731

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
732
    Firstly, calculate loss function as follows:
733 734

    .. math::
735
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
736

737
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
738 739

    .. math::
740
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
741

N
Noel 已提交
742
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
743 744 745
    we reformulate the loss as follows:

    .. math::
746
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
747

学渣戊's avatar
学渣戊 已提交
748
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
749 750 751 752
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
753 754
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
783
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
784 785 786 787 788 789 790
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
791

792 793
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
794
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
795
            print(output)  # [0.45618808]
796 797 798 799 800 801

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
802 803
            % reduction
        )
804

805
    if in_dygraph_mode():
806 807 808
        one = _C_ops.full(
            [1],
            float(1.0),
809
            logit.dtype,
810 811 812 813 814
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
815
        if pos_weight is not None:
816
            log_weight = _C_ops.add(
817 818
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
819
            out = _C_ops.multiply(out, log_weight)
820
        if weight is not None:
821
            out = _C_ops.multiply(out, weight)
822 823

        if reduction == "sum":
824
            return _C_ops.sum(out, [], None, False)
825
        elif reduction == "mean":
826
            return _C_ops.mean_all(out)
H
hong 已提交
827
        else:
828
            return out
姜永久 已提交
829
    else:
830
        check_variable_and_dtype(
姜永久 已提交
831 832
            logit,
            'logit',
833 834 835 836
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
837 838
            label,
            'label',
839 840 841
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
842 843 844
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
845

姜永久 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            log_weight = paddle.add(
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
            pos_weight_name = (
                name if reduction == 'none' and weight is None else None
            )
            out = paddle.multiply(out, log_weight, name=pos_weight_name)

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
888 889


890 891 892 893 894 895 896 897 898 899 900
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
901 902 903
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
904

905 906 907
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
908 909

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
910 911
    represents the number of classes or the size of word dict.

912 913 914 915
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
962 963 964 965 966
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
967 968 969
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
970 971 972 973
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
974 975

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
976 977 978 979
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
980
    """
L
Linjie Chen 已提交
981 982 983 984 985
    if num_classes < 2:
        raise ValueError(
            'Expected num_classes >= 2 (got {})'.format(num_classes)
        )

986
    if in_dygraph_mode():
987
        out, _, _ = _C_ops.hsigmoid_loss(
988 989
            input,
            label,
990 991
            weight,
            bias,
992 993 994 995 996 997
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
998
        return out
姜永久 已提交
999
    else:
1000

1001
        check_variable_and_dtype(
姜永久 已提交
1002
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
1003
        )
姜永久 已提交
1004
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
1005
        check_variable_and_dtype(
姜永久 已提交
1006
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
1007
        )
姜永久 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
1020

姜永久 已提交
1021 1022 1023 1024 1025
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": is_sparse,
        }
1026

姜永久 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1048 1049


1050
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1051
    r"""
1052
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1053 1054 1055 1056 1057 1058
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1059
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1060 1061


1062
    where :math:`z_i` is given by:
1063 1064 1065

    .. math::

1066
        \mathop{z_i} = \left\{\begin{array}{rcl}
1067 1068 1069
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1083
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1084 1085 1086
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1087
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1088 1089

    Returns:
1090
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1091 1092 1093 1094 1095 1096

    Examples:
        .. code-block:: python

            import paddle

1097 1098
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1099
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1100
            print(output)
1101
            # [0.068004]
1102 1103
    """

1104
    if in_dygraph_mode():
1105
        out, residual = _C_ops.huber_loss(input, label, delta)
1106
    else:
1107 1108 1109 1110 1111 1112
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
        )
1113 1114
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1115 1116
            dtype=helper.input_dtype()
        )
1117
        out = helper.create_variable_for_type_inference(
1118 1119 1120 1121 1122 1123 1124 1125
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1126 1127 1128 1129

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1130 1131
            " 'none', but received %s, which is not allowed." % reduction
        )
1132 1133 1134
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1135
        return paddle.mean(out)
1136
    elif reduction == 'sum':
1137
        return paddle.sum(out)
1138 1139


1140 1141 1142
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1143
    r"""
1144

1145
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1146

1147
    .. math::
1148
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1165
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1166 1167 1168 1169
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1170
    Returns:
1171
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1172 1173 1174 1175 1176

    Examples:

        .. code-block:: python

1177 1178
            import paddle

Z
Zhong Hui 已提交
1179 1180 1181
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1182
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1183
            print(loss) # [0.75]
1184
    """
1185 1186 1187
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1188 1189
            "received %s, which is not allowed." % reduction
        )
1190
    if in_dygraph_mode():
1191 1192
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1193 1194
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1195 1196
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1197
        if reduction == 'sum':
1198
            return _C_ops.sum(out, [], None, False)
1199
        elif reduction == 'mean':
1200
            return _C_ops.mean_all(out)
1201
        return out
姜永久 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1213

姜永久 已提交
1214 1215 1216
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1217

姜永久 已提交
1218 1219 1220 1221 1222 1223
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1224

姜永久 已提交
1225
        result_out = helper.create_variable_for_type_inference(input.dtype)
1226

姜永久 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1251 1252


1253
def l1_loss(input, label, reduction='mean', name=None):
1254
    r"""
1255

1256
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1257

1258
    If `reduction` set to ``'none'``, the loss is:
1259 1260

    .. math::
1261
        Out = \lvert input - label \rvert
1262

1263
    If `reduction` set to ``'mean'``, the loss is:
1264 1265

    .. math::
1266
        Out = MEAN(\lvert input - label \rvert)
1267

1268
    If `reduction` set to ``'sum'``, the loss is:
1269 1270

    .. math::
1271
        Out = SUM(\lvert input - label \rvert)
1272

1273

1274
    Parameters:
N
Noel 已提交
1275 1276
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1277
        reduction (str, optional): Indicate the reduction to apply to the loss,
1278
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1279 1280 1281
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1282 1283
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1284

1285
    Returns:
1286
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1287
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1288
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1289

1290 1291
    Examples:
        .. code-block:: python
N
Noel 已提交
1292

1293
            import paddle
1294

1295 1296
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1297

1298
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1299 1300 1301
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
1302

1303
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1304 1305 1306 1307
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1308

1309
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1310 1311 1312
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
1313

1314 1315 1316 1317
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1318 1319
            "received %s, which is not allowed." % reduction
        )
1320

1321
    if in_dygraph_mode():
1322 1323
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1324
        if reduction == 'mean':
1325
            return _C_ops.mean_all(unreduced)
1326
        elif reduction == 'sum':
1327
            return _C_ops.sum(unreduced, [], None, False)
1328 1329
        else:
            return unreduced
姜永久 已提交
1330 1331 1332 1333 1334 1335
    else:
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
1336
        )
1337

姜永久 已提交
1338 1339 1340 1341 1342 1343 1344 1345
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1346 1347 1348 1349 1350


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1351 1352
    """
    This api returns negative log likelihood.
1353 1354
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1366 1367
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1382

1383 1384 1385 1386
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1387 1388 1389 1390 1391
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1392
                log_out = log_softmax(input)
1393
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1394
                result = nll_loss(log_out, label)
1395
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1396 1397 1398 1399
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1400 1401
            "'none', but received %s, which is not allowed." % reduction
        )
1402 1403 1404

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1416
    if input_dims < 2:
1417
        raise ValueError(
1418 1419
            'Expected 2 or more dimensions (got {})'.format(input_dims)
        )
1420 1421 1422 1423 1424 1425 1426 1427

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1428 1429
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1430 1431
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1432 1433
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1434
            out_shape = [n] + input_shape[2:]
1435 1436 1437
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1438
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1439
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1440
        return out
姜永久 已提交
1441 1442 1443
    else:
        helper = LayerHelper('nll_loss', **locals())

1444
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1445 1446
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1447
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1448

姜永久 已提交
1449 1450
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1451
        )
姜永久 已提交
1452 1453 1454 1455 1456 1457
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1458

姜永久 已提交
1459 1460 1461 1462 1463
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1464

姜永久 已提交
1465 1466 1467 1468 1469
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1470

姜永久 已提交
1471
        return out
1472 1473


1474
def kl_div(input, label, reduction='mean', name=None):
1475
    r"""
1476
    Calculate the Kullback-Leibler divergence loss
1477 1478 1479 1480 1481 1482 1483
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1484
    Here :math:`x` is input and :math:`y` is label.
1485

1486
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1487

1488
    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.
1489

1490
    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.
1491

1492
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1493 1494

    Args:
1495
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1496
            any number of additional dimensions. It's data type should be float32, float64.
1497
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1498 1499 1500 1501 1502 1503 1504
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1505
        name(str, optional): Name for the operation (optional, default is None). For more information,
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1516

1517
            shape = (5, 20)
1518 1519
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1520

L
LielinJiang 已提交
1521
            # 'batchmean' reduction, loss shape will be [1]
1522
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1523
            # shape=[1]
1524

1525
            # 'mean' reduction, loss shape will be [1]
1526
            pred_loss = F.kl_div(x, target, reduction='mean')
1527 1528 1529
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1530
            pred_loss = F.kl_div(x, target, reduction='sum')
1531 1532 1533
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1534
            pred_loss = F.kl_div(x, target, reduction='none')
1535 1536 1537
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1538
    # ugly type promotion
1539 1540 1541 1542
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1543
        input = paddle.cast(input, 'float64')
1544 1545 1546 1547
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1548
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1549

1550
    if in_dygraph_mode():
1551
        out = _C_ops.kldiv_loss(input, label, 'none')
1552 1553 1554 1555 1556 1557 1558 1559 1560
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1561 1562
    else:
        helper = LayerHelper('kl_div', **locals())
1563

姜永久 已提交
1564 1565 1566 1567 1568 1569 1570
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1571

姜永久 已提交
1572 1573 1574 1575 1576 1577 1578
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1579

姜永久 已提交
1580 1581 1582 1583 1584 1585 1586 1587
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1588 1589


1590
def mse_loss(input, label, reduction='mean', name=None):
1591
    r"""
1592
    Accept input predications and label and returns the mean square error.
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1622
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1623

1624 1625 1626
    Examples:

        .. code-block:: python
1627

1628 1629
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1630 1631
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1632
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1633
            print(output)
1634 1635 1636 1637 1638 1639 1640
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1641 1642
            "but received {}.".format(reduction)
        )
1643

Z
zhiboniu 已提交
1644
    if not in_dynamic_mode():
1645 1646 1647 1648 1649 1650
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1651 1652

    if reduction == 'none':
1653
        return paddle.square(paddle.subtract(input, label), name=name)
1654
    elif reduction == 'mean':
1655 1656 1657
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1658
    else:
1659 1660 1661
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1662 1663


1664 1665 1666 1667 1668 1669 1670 1671 1672
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1673 1674
    """

1675 1676 1677
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1678 1679 1680
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1681
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1682 1683 1684
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1685 1686 1687
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1688

1689 1690
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1709
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1722 1723 1724 1725 1726 1727
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1728

1729 1730 1731 1732
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1733
                reduction='none')
1734 1735 1736
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1737

1738 1739 1740 1741 1742
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1743 1744 1745
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1746 1747 1748

    """

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
        if in_dygraph_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1766 1767
        else:
            helper = LayerHelper('warpctc', **locals())
1768
            check_variable_and_dtype(
姜永久 已提交
1769
                input, 'input', ['float32', 'float64'], "warpctc"
1770
            )
姜永久 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1782

姜永久 已提交
1783 1784 1785 1786 1787 1788
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1789

姜永久 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1800 1801

    loss_out = warpctc(
1802 1803
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1804

Z
zhiboniu 已提交
1805
    loss_out = paddle.squeeze(loss_out, [-1])
1806 1807
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1808
        loss_out = paddle.mean(loss_out / label_lengths)
1809 1810 1811
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax, is the longest length of input logit sequence. The data type should be float32 or float64.
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
        if in_dygraph_mode():
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
1936 1937


1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
1949
    r"""
1950 1951
    .. math::

1952
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1953

1954
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1955 1956 1957 1958
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1959 1960 1961 1962
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1963 1964

    Args:
G
Guoxia Wang 已提交
1965
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1966
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1967 1968 1969 1970 1971
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1972
        group (Group, optional): The group instance return by paddle.distributed.new_group
1973 1974
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1975 1976 1977 1978 1979 1980 1981 1982
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1983 1984 1985 1986 1987 1988
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1989 1990 1991 1992

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1993
        :name: code-example1
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2042
        :name: code-example2
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2089
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2133
    if not (group is False or group is None or hasattr(group, 'is_member')):
2134 2135
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2136 2137 2138 2139
             (got group: {})'.format(
                group
            )
        )
2140 2141 2142
        return

    if hasattr(group, 'is_member') and not group.is_member():
2143 2144
        return

2145
    ring_id = 0
2146 2147
    rank = 0
    nranks = 1
2148
    if group is not False:
2149 2150 2151 2152
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2153 2154 2155 2156 2157
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2158
            nranks = parallel_env.world_size if group is None else group.nranks
2159 2160 2161 2162 2163

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2164
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2165
             (got input_dims{}, label_dims{})'.format(
2166 2167 2168
                input_dims, label_dims
            )
        )
2169 2170 2171
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2172
    if in_dygraph_mode():
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2185 2186 2187 2188 2189 2190 2191 2192
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2193 2194 2195 2196 2197 2198 2199
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2200
            logits,
姜永久 已提交
2201 2202 2203
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2204
        )
姜永久 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2225 2226 2227 2228
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2229

2230 2231 2232 2233 2234 2235
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2236 2237 2238 2239
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2254
    r"""
2255 2256
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2257 2258 2259 2260 2261 2262
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2263 2264 2265
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2292 2293 2294
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2295 2296 2297 2298 2299
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2300
                                      if :attr:`soft_label` is set to :attr:`False`.
2301 2302 2303
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2304 2305 2306
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2307 2308 2309 2310 2311
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2312
        axis (int, optional): The index of dimension to perform softmax calculations. It
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2328 2329 2330 2331 2332

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2333
            print(out)
2334 2335
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2336
    """
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2359
    r"""
2360

2361
    By default, the cross entropy loss function is implemented using softmax. This function
2362 2363
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2364

2365
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2366

2367
    By default, calculate the mean of the result, and you can also affect
2368
    the default behavior by using the reduction parameter. Please refer to the part of
2369
    parameters for details.
2370

2371
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2372
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2373
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2374

2375
    The calculation includes the following two steps.
2376

2377
    - **1.softmax cross entropy**
2378

2379
        1. Hard label (each sample can only be assigned into one category)
2380

2381
        1.1. when use_softmax=True
2382

2383 2384
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2427
                \\loss_j=loss_j*weight[label_j]
2428

2429

2430 2431 2432 2433 2434 2435 2436
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2437
            2.1 if the ``reduction`` parameter is ``none``
2438 2439 2440

                Return the previous result directly

2441
            2.2 if the ``reduction`` parameter is ``sum``
2442 2443 2444 2445 2446 2447

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2448 2449
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2450

2451
            2.3.1. If the  ``weight``  parameter is ``None``
2452 2453 2454

                   Return the average value of the previous results

2455
            .. math::
2456 2457 2458 2459 2460 2461 2462 2463
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2464
            .. math::
2465
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2466 2467 2468

            2. Soft labels (soft_label = True)

2469
            .. math::
2470
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2471 2472


2473
    Parameters:
2474
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2475

2476
            Note:
2477
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2478
                2. when use_softmax=False, it expects the output of softmax operator.
2479

2480
        label (Tensor):
2481 2482 2483 2484
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2485
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2486 2487
            and the sum of the labels for each sample should be 1.

2488
        weight (Tensor, optional): a manual rescaling weight given to each class.
2489
            If given, has to be a Tensor of size C and the data type is float32, float64.
2490
            Default is ``'None'`` .
2491
        ignore_index (int64, optional): Specifies a target value that is ignored
2492 2493
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2494
            Default is ``-100`` .
2495
        reduction (str, optional): Indicate how to average the loss by batch_size,
2496 2497
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2498
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2499 2500
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2501 2502
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2503 2504
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2505
            Default is ``-1`` .
2506
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2507
            Default is ``True``.
2508
        name (str, optional): The name of the operator. Default is ``None`` .
2509
            For more information, please refer to :ref:`api_guide_Name` .
2510 2511 2512

    Returns:

2513 2514
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2515

2516
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2517

2518
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2519

2520
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2521

2522
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2523

2524
    Examples:
2525
        .. code-block:: python
2526 2527

            # hard labels
2528 2529 2530 2531 2532
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2533
            input =  paddle.rand([N, C], dtype='float64')
2534
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2535 2536
            weight = paddle.rand([C], dtype='float64')

2537 2538 2539
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2540 2541 2542 2543 2544
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
2545 2546

        .. code-block:: python
2547 2548

            # soft labels
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2562 2563 2564 2565 2566 2567 2568 2569 2570
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
C
Chen Long 已提交
2571

2572 2573 2574 2575
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2576 2577
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2578 2579
            % reduction
        )
2580
    if ignore_index > 0 and soft_label:
2581 2582
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2583 2584 2585
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2586

2587
    input_dims = len(list(input.shape))
2588 2589 2590
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2591 2592 2593
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2594

2595
    if in_dygraph_mode():
2596
        if not soft_label:
2597 2598 2599
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
2600 2601 2602
        if core.is_compiled_with_custom_device(
            "npu"
        ) or core.is_compiled_with_custom_device("mlu"):
2603
            if not soft_label:
2604
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2618
            else:
2619
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2633
        else:
2634 2635 2636
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2637 2638 2639 2640

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2641
            if soft_label:
2642 2643 2644 2645
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2646 2647 2648 2649 2650 2651
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2652 2653 2654 2655
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2656
                out = _C_ops.multiply(out, weight_gather_reshape)
2657 2658 2659 2660 2661
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2674
                    # TODO: Temporarily use squeeze instead of squeeze_
2675 2676 2677
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2678
                if axis != -1 and axis != valid_label.ndim - 1:
2679 2680 2681 2682 2683 2684 2685 2686 2687
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2688
                    weight_gather = _C_ops.gather_nd(
2689 2690
                        weight, valid_label.transpose(temp_perm)
                    )
2691
                else:
2692
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2693 2694 2695
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2696
                input_shape = list(label.shape)
2697 2698 2699
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2700
                out = paddle.cast(out, weight_gather_reshape.dtype)
2701
                out = _C_ops.multiply(out, weight_gather_reshape)
2702 2703 2704 2705 2706

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2707
            return _C_ops.sum(out, [], None, False)
2708 2709 2710 2711 2712 2713 2714
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2715 2716 2717
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2718
                out_sum = _C_ops.sum(out, [], None, False)
2719 2720 2721 2722 2723
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2724
                    count = _C_ops.sum(mask, [], None, False)
2725 2726 2727
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2728 2729 2730
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2731
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2732 2733 2734
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2735
                out_sum = _C_ops.sum(out, [], None, False)
2736 2737 2738
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2739 2740
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2741
                return _C_ops.mean_all(out)
2742 2743 2744 2745 2746 2747

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
2773 2774 2775
        if core.is_compiled_with_custom_device(
            "npu"
        ) or core.is_compiled_with_custom_device("mlu"):
姜永久 已提交
2776 2777
            backprop = helper.create_variable_for_type_inference(
                dtype=input.dtype
2778
            )
姜永久 已提交
2779 2780 2781 2782 2783 2784 2785
            outputs['Backprop'] = backprop
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2786

2787
        if weight is not None:
姜永久 已提交
2788 2789 2790 2791 2792 2793 2794
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2795
            if soft_label:
2796
                # chajchaj:
姜永久 已提交
2797
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2798
                # weight's shape is C, where C is class num.
2799 2800
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2801 2802 2803 2804 2805 2806
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2807

2808 2809 2810 2811
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2812 2813 2814 2815
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2816 2817 2818 2819 2820
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2821 2822 2823
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2824
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2825
                    (label != ignore_index), input.dtype
2826 2827 2828 2829 2830 2831 2832 2833
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2834
                if axis != -1 and axis != valid_label.ndim - 1:
2835 2836 2837 2838 2839 2840 2841 2842 2843
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2844 2845
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2846
                    )
2847
                else:
姜永久 已提交
2848 2849
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2850 2851
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2852

2853
                input_shape = list(label.shape)
2854 2855 2856
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2857
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2858

2859
        if reduction == "sum":
姜永久 已提交
2860
            return paddle.sum(out, name=name)
2861
        elif reduction == "mean":
姜永久 已提交
2862 2863
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2864 2865 2866
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2867
                mask = label != ignore_index
2868
                if weight is None:
2869
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2870
                    count = paddle.sum(mask, name=name)
2871
                    ret = out_sum / (count + (count == 0.0))
2872 2873
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2874
                    weight_ignored = paddle.multiply(
2875 2876
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2877
                    weight_sum = paddle.sum(weight_ignored, name=name)
2878
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2879 2880
                return ret
            elif weight is not None:
姜永久 已提交
2881 2882
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2883
                return out_sum / (total_weight + (total_weight == 0.0))
2884
            else:
姜永久 已提交
2885 2886
                return paddle.mean(out, name=name)

2887
        else:
2888 2889 2890
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2891
            return out
2892 2893


2894 2895 2896 2897 2898 2899 2900 2901 2902
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2903
    r"""
2904 2905 2906 2907 2908 2909
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2910
    This operator measures focal loss function as follows:
2911 2912

    .. math::
2913
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2914

2915
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2916 2917 2918 2919 2920

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2921
           Out = \frac{Out}{normalizer}
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
2938 2939
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
2940 2941
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2942
            it should be between 0 and 1.  Default value is set to 0.25.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2967
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2968
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2969
            print(output)  # [0.65782464]
2970 2971 2972 2973 2974 2975

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2976 2977
            % reduction
        )
2978 2979

    if normalizer is not None:
2980 2981 2982 2983 2984 2985
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
2986 2987 2988 2989
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2990
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
2991 2992 2993
                    normalizer_dims
                )
            )
2994

2995 2996
    if in_dygraph_mode():
        place = _current_expected_place()
2997
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2998

2999 3000 3001
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
3002

3003
        pred = _C_ops.sigmoid(logit)
3004

3005 3006
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
3007 3008 3009 3010
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
3011 3012

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
3013 3014
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
3015 3016 3017 3018
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
3019
        loss = _C_ops.multiply(alpha_t, loss)
3020 3021

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
3022 3023
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
3024 3025

        if normalizer is not None:
3026
            loss = _C_ops.divide(loss, normalizer)
3027 3028

        if reduction == "sum":
3029
            return _C_ops.sum(loss, [], None, False)
3030
        elif reduction == "mean":
3031
            return _C_ops.mean_all(loss)
3032 3033 3034

        return loss

姜永久 已提交
3035 3036 3037
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3038
        )
姜永久 已提交
3039 3040
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3041
        )
3042

姜永久 已提交
3043 3044 3045 3046 3047
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, reduction='none', name=bce_name
3048
        )
3049

姜永久 已提交
3050 3051
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3052

姜永久 已提交
3053 3054
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3055

姜永久 已提交
3056 3057
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3058

姜永久 已提交
3059 3060 3061
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3062

姜永久 已提交
3063 3064 3065 3066
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3067

姜永久 已提交
3068
        return loss
3069 3070


3071 3072 3073
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3074
    r"""
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3103

3104 3105 3106 3107 3108
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3109

3110 3111
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3112

3113 3114
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3127 3128 3129 3130
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3131 3132
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3133 3134

    if not (input.shape == label.shape):
3135 3136 3137 3138
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3139

姜永久 已提交
3140
    if not in_dygraph_mode():
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3153

3154 3155 3156 3157
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3158 3159

    if weight is not None:
姜永久 已提交
3160
        if not in_dygraph_mode():
3161 3162 3163 3164 3165 3166
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3179 3180
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3181
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3256 3257
            "but received {}.".format(reduction)
        )
3258

姜永久 已提交
3259
    if not in_dygraph_mode():
3260 3261 3262 3263 3264 3265
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3266 3267

    zero_ = paddle.zeros([1], dtype=input.dtype)
3268 3269 3270
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3271 3272 3273 3274 3275 3276 3277

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3278 3279


3280 3281 3282
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3283
    r"""
3284
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3300 3301
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3302
                         Available dtypes are float32, float64.
3303
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3304
                         Available dtypes are float32, float64.
3305
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3343 3344
            "1D target tensor expected, multi-target not supported"
        )
3345 3346 3347 3348

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3349 3350
            "different sizes"
        )
3351 3352 3353 3354 3355 3356 3357 3358

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3359 3360
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3361
    if label.dtype not in [
3362 3363 3364 3365
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3389 3390


3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3420
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3436

3437 3438
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3439

Y
yangguohao 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3451

Y
yangguohao 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
3475 3476 3477 3478 3479
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3480 3481 3482 3483
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3484
    if not in_dygraph_mode():
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3503 3504

    if not (input.shape == positive.shape == negative.shape):
3505 3506 3507 3508 3509
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3510

3511 3512 3513
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3514
        else paddle.nn.PairwiseDistance(2)
3515
    )
Y
yangguohao 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3527 3528
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3538 3539


3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3627 3628
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3629 3630 3631 3632
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3633
    if not in_dygraph_mode():
3634 3635 3636 3637 3638 3639 3640 3641 3642
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3643 3644

    if not (input.shape == positive.shape == negative.shape):
3645 3646 3647 3648 3649
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3667 3668


3669 3670 3671 3672 3673 3674 3675 3676 3677
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3740 3741
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3742

姜永久 已提交
3743
    if not in_dygraph_mode():
3744 3745 3746 3747 3748 3749
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3750 3751 3752 3753
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3754 3755 3756
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3757 3758 3759
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
姜永久 已提交
3760
        if not in_dygraph_mode():
3761 3762 3763
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3764 3765 3766
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3767 3768 3769 3770
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3771 3772 3773
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3774 3775 3776 3777 3778
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3779
    else:
3780 3781 3782 3783 3784 3785 3786 3787 3788
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3798 3799
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3800

3801 3802 3803 3804 3805 3806 3807 3808
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3809
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3810
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3811
            Available dtype is float32, float64.
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3829
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [1].
3830 3831 3832 3833 3834 3835 3836 3837 3838

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3839 3840 3841 3842 3843 3844 3845
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3846 3847

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3848 3849 3850 3851 3852 3853 3854
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3855

3856 3857 3858 3859
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3860 3861 3862
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3863

姜永久 已提交
3864
    if not in_dygraph_mode():
3865
        fluid.data_feeder.check_variable_and_dtype(
3866 3867 3868 3869 3870 3871 3872 3873
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3874 3875

    if not (input.shape == label.shape):
3876
        raise ValueError("input's shape must equal to " "label's shape")
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out