search.py 43.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
17
from ..framework import LayerHelper
C
Chengmo 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
20 21
from ..framework import core, in_dygraph_mode, _non_static_mode
from ..fluid.framework import _in_legacy_dygraph
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
37
    Sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
C
Chen Long 已提交
44
            as axis+R. Default is -1.
45 46 47
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
48
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
49 50 51 52 53 54

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
55

56
        .. code-block:: python
李灿 已提交
57

58 59
            import paddle
            
60 61 62 63 64 65 66
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
C
Chen Long 已提交
67 68 69 70
            out1 = paddle.argsort(x, axis=-1)
            out2 = paddle.argsort(x, axis=0)
            out3 = paddle.argsort(x, axis=1)
            
N
Noel 已提交
71
            print(out1)
W
wawltor 已提交
72 73 74
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
75
            # [[1 3 2 0]
W
wawltor 已提交
76 77
            #  [0 1 2 3]
            #  [2 0 3 1]]]
C
Chen Long 已提交
78
            
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
C
Chen Long 已提交
86
            
N
Noel 已提交
87
            print(out3)
W
wawltor 已提交
88 89 90 91 92 93
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
94
    """
H
hong 已提交
95
    if in_dygraph_mode():
96
        _, ids = _C_ops.final_state_argsort(x, axis, descending)
H
hong 已提交
97 98 99
        return ids

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
100
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
101 102 103 104 105 106
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
107 108 109 110 111 112 113 114 115 116 117 118 119 120
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
121 122 123
    return ids


124
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
125
    """
126
    Computes the indices of the max elements of the input tensor's
127 128 129
    element along the provided axis.

    Args:
W
wawltor 已提交
130
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
131 132
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
133 134
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
135
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
136
        dtype(str|np.dtype, optional): Data type of the output tensor which can
137
                    be int32, int64. The default value is ``int64`` , and it will
138
                    return the int64 indices.
139
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
140 141

    Returns:
142
        Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
143 144 145 146

    Examples:
        .. code-block:: python

W
wawltor 已提交
147
            import paddle
148

149 150 151
            x = paddle.to_tensor([[5,8,9,5],
                                 [0,0,1,7],
                                 [6,9,2,4]])
W
wawltor 已提交
152
            out1 = paddle.argmax(x)
N
Noel 已提交
153
            print(out1) # 2
154
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
155
            print(out2) 
156
            # [2, 2, 0, 1]
W
wawltor 已提交
157
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
158
            print(out3) 
159 160 161 162
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
163
    """
164 165 166 167
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
168

169 170 171 172
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
173

174
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
175 176 177 178 179
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
180 181 182
    if in_dygraph_mode():
        return _C_ops.final_state_argmax(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
183 184
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
185 186 187 188 189 190
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
191
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
192
    attrs = {}
W
wawltor 已提交
193 194 195 196
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
197
    attrs['dtype'] = var_dtype
198 199 200 201
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
W
wawltor 已提交
202 203 204 205
    out.stop_gradient = True
    return out


206
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
207
    """
208
    Computes the indices of the min elements of the input tensor's
W
wawltor 已提交
209 210 211 212 213 214 215 216
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
217
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
218
        dtype(str, optional): Data type of the output tensor which can
219
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
220
                    return the int64 indices.
221 222
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
W
wawltor 已提交
223
    Returns:
224
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`.
W
wawltor 已提交
225 226 227

    Examples:
        .. code-block:: python
228

W
wawltor 已提交
229 230
            import paddle

231 232 233
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
234
            out1 = paddle.argmin(x)
N
Noel 已提交
235
            print(out1) # 4
236
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
237
            print(out2) 
238
            # [1, 1, 1, 2]
W
wawltor 已提交
239
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
240
            print(out3) 
241 242 243 244
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
245
    """
246 247 248 249
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
250

251 252 253 254
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
255

256
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
257
    flatten = False
258
    if axis is None:
W
wawltor 已提交
259 260 261
        flatten = True
        axis = 0

H
hong 已提交
262 263 264
    if in_dygraph_mode():
        return _C_ops.final_state_argmin(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
265 266
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
267 268 269 270 271 272
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
273
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
274
    out = helper.create_variable_for_type_inference(var_dtype)
275
    attrs = {}
W
wawltor 已提交
276
    attrs['keepdims'] = keepdim
277
    attrs['axis'] = axis
W
wawltor 已提交
278
    attrs['flatten'] = flatten
279
    attrs['dtype'] = var_dtype
280 281 282 283
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs=attrs)
284 285
    out.stop_gradient = True
    return out
286 287


288
def index_select(x, index, axis=0, name=None):
289
    """
S
swtkiwi 已提交
290

291 292 293 294
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
295

296
    Args:
297 298 299
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
300
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
301 302

    Returns:
303
        Tensor: A Tensor with same data type as ``x``.
304
    
305 306
    Examples:
        .. code-block:: python
307
            
308 309
            import paddle

310 311 312 313
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
314 315 316 317 318 319 320 321
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
322
    """
323

F
From00 已提交
324 325 326 327
    if in_dygraph_mode():
        return _C_ops.final_state_index_select(x, index, axis)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
328
        return _C_ops.index_select(x, index, 'dim', axis)
329

330 331 332
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
333
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
334
                             'paddle.tensor.search.index_select')
335

336
    out = helper.create_variable_for_type_inference(x.dtype)
337

338 339 340 341 342 343 344
    helper.append_op(type='index_select',
                     inputs={
                         'X': x,
                         'Index': index
                     },
                     outputs={'Out': out},
                     attrs={'dim': axis})
345 346 347
    return out


348
def nonzero(x, as_tuple=False):
349 350 351 352 353 354 355 356
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
357

358
    Args:
359
        x (Tensor): The input tensor variable.
360 361 362
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
363
        Tensor. The data type is int64.
364 365

    Examples:
366

N
Noel 已提交
367
        .. code-block:: python
李灿 已提交
368

369
            import paddle
370 371

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
372 373
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
374 375
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
376
            print(out_z1)
377 378 379 380 381
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
382
                print(out)
383 384 385 386 387 388 389
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
390
            print(out_z2)
391 392 393 394
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
395
                print(out)
396 397
            #[[1]
            # [3]]
N
Noel 已提交
398

399 400
    """
    list_out = []
401
    shape = x.shape
402 403
    rank = len(shape)

404 405 406
    if in_dygraph_mode():
        outs = _C_ops.final_state_where_index(x)
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
407
        outs = _C_ops.where_index(x)
408
    else:
409 410 411 412 413
        helper = LayerHelper("where_index", **locals())

        outs = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64)

414 415 416
        helper.append_op(type='where_index',
                         inputs={'Condition': x},
                         outputs={'Out': [outs]})
417 418 419 420 421 422 423 424

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
425
                paddle.slice(outs, axes=[1], starts=[i], ends=[i + 1]))
426 427 428
        return tuple(list_out)


429
def sort(x, axis=-1, descending=False, name=None):
430
    """
S
swtkiwi 已提交
431

432
    Sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
433

434
    Args:
435
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
436 437 438
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
439
            as axis+R. Default is -1.
440 441 442
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
443 444
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
        
445
    Returns:
W
wawltor 已提交
446
        Tensor: sorted tensor(with the same shape and data type as ``x``).
447
    Examples:
N
Noel 已提交
448

449
        .. code-block:: python
N
Noel 已提交
450

451
            import paddle
N
Noel 已提交
452

453 454 455 456 457 458 459
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
460 461 462
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
463
            print(out1)
W
wawltor 已提交
464 465 466 467 468 469
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
470
            print(out2)
471
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
472 473 474 475 476
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
477
            print(out3)
478
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
479 480 481 482 483
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
484
    """
485 486 487 488 489 490 491
    if in_dygraph_mode():
        outs, _ = _C_ops.final_state_argsort(x, axis, descending)
        return outs

    if _in_legacy_dygraph():
        outs, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
        return outs
492
    helper = LayerHelper("sort", **locals())
493 494 495 496 497 498 499 500 501 502 503 504 505 506
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=False)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': x},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
W
wawltor 已提交
507
    return out
C
Chengmo 已提交
508 509


510 511
def mode(x, axis=-1, keepdim=False, name=None):
    """
512
    Used to find values and indices of the modes at the optional axis.
513 514 515 516 517 518 519

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
520
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
541 542 543
    if in_dygraph_mode():
        return _C_ops.final_state_mode(x, axis, keepdim)
    if _in_legacy_dygraph():
544 545 546 547 548 549 550 551 552 553 554
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

555 556 557 558 559 560 561
    helper.append_op(type="mode",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
562 563 564 565
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
566
def where(condition, x=None, y=None, name=None):
567
    r"""
568
    Return a Tensor of elements selected from either :attr:`x` or :attr:`y` according to corresponding elements of :attr:`condition`. Concretely,
R
ronnywang 已提交
569

570
    .. math::
C
Chengmo 已提交
571

572 573 574 575 576
        out_i =
        \begin{cases}
        x_i, & \text{if}  \ condition_i \  \text{is} \ True \\
        y_i, & \text{if}  \ condition_i \  \text{is} \ False \\
        \end{cases}.
C
Chengmo 已提交
577

578 579
    Notes:
        ``numpy.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``, please refer to :ref:`api_tensor_search_nonzero`.
580

581
    Args:
582 583 584 585
        condition (Tensor): The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
        x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
586

587
    Returns:
588
        Tensor: A Tensor with the same shape as :attr:`condition` and same data type as :attr:`x` and :attr:`y`.
589

590
    Examples:
591
        
592 593
        .. code-block:: python

594
            import paddle
595
            
596 597
            x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
            y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
598
            
599 600 601
            out = paddle.where(x>1, x, y)
            print(out)
            #out: [1.0, 1.0, 3.2, 1.2]
602
            
603 604 605 606 607
            out = paddle.where(x>1)
            print(out)
            #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
            #            [[2],
            #             [3]]),)
608
    """
R
ronnywang 已提交
609
    if np.isscalar(x):
610
        x = paddle.full([1], x, np.array([x]).dtype.name)
R
ronnywang 已提交
611 612

    if np.isscalar(y):
613
        y = paddle.full([1], y, np.array([y]).dtype.name)
R
ronnywang 已提交
614

R
ronnywang 已提交
615 616 617 618 619 620
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
621
    if not paddle.in_dynamic_mode():
622
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
623 624 625 626 627 628
        check_variable_and_dtype(x, 'x',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
        check_variable_and_dtype(y, 'y',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'where')
629

630
    condition_shape = list(condition.shape)
631 632
    x_shape = list(x.shape)
    y_shape = list(y.shape)
633

634
    if x_shape == y_shape and condition_shape == x_shape:
635 636 637 638 639
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
640 641 642 643 644
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
645
            return out
646

Z
zhiboniu 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
660 661 662
    if in_dygraph_mode():
        return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                        broadcast_y)
663
    else:
J
Jiabin Yang 已提交
664 665 666 667 668 669
        if _in_legacy_dygraph():
            return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

670 671 672 673 674 675 676
            helper.append_op(type='where',
                             inputs={
                                 'Condition': broadcast_condition,
                                 'X': broadcast_x,
                                 'Y': broadcast_y
                             },
                             outputs={'Out': [out]})
677

J
Jiabin Yang 已提交
678
            return out
679 680


C
Chengmo 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
705
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
706
            int32, int64, float32, float64.
C
Chengmo 已提交
707
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
708 709 710
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
711
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
712 713 714 715 716 717

    Examples:

        .. code-block:: python

            import paddle
718 719 720 721 722 723 724 725 726 727 728

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
729
            print(out_z1)
730 731 732 733 734 735 736 737
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
738
            print(top_value)
739 740 741 742
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
743
            print(top_index)
744 745 746 747
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
748
            print(out_z2)
749 750 751
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
752

C
Chengmo 已提交
753
    """
J
Jiabin Yang 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767
    if in_dygraph_mode():
        return _C_ops.final_state_index_sample(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.index_sample(x, index)
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

768 769 770 771 772 773
            helper.append_op(type='index_sample',
                             inputs={
                                 'X': x,
                                 'Index': index
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
774
            return out
775 776 777 778


def masked_select(x, mask, name=None):
    """
C
Chen Long 已提交
779
    Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
780 781 782 783 784
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
785
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
786

787 788
    Returns: 
        A 1-D Tensor which is the same data type  as ``x``.
789 790 791 792 793 794
    
    Examples:

        .. code-block:: python

            import paddle
795 796 797 798 799 800 801

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
802 803 804 805
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
806 807 808 809
    if in_dygraph_mode():
        return _C_ops.final_state_masked_select(x, mask)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
810
        return _C_ops.masked_select(x, mask)
811 812 813 814 815 816 817

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
818 819 820 821 822 823
    helper.append_op(type='masked_select',
                     inputs={
                         'X': x,
                         'Mask': mask
                     },
                     outputs={'Y': out})
824
    return out
W
wawltor 已提交
825 826 827 828


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
829
    Return values and indices of the k largest or smallest at the optional axis.
W
wawltor 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python
851

852
            import paddle
W
wawltor 已提交
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            data_1 = paddle.to_tensor([1, 4, 5, 7])
            value_1, indices_1 = paddle.topk(data_1, k=1)
            print(value_1) # [7]
            print(indices_1) # [3]

            data_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
            value_2, indices_2 = paddle.topk(data_2, k=1)
            print(value_2) # [[7], [6]]
            print(indices_2) # [[3], [1]]

            value_3, indices_3 = paddle.topk(data_2, k=1, axis=-1)
            print(value_3) # [[7], [6]]
            print(indices_3) # [[3], [1]]

            value_4, indices_4 = paddle.topk(data_2, k=1, axis=0)
            print(value_4) # [[2, 6, 5, 7]]
            print(indices_4) # [[1, 1, 0, 0]]
W
wawltor 已提交
871 872 873


    """
H
hong 已提交
874

H
hong 已提交
875 876 877 878 879 880
    if in_dygraph_mode():
        if axis == None:
            axis = -1
        out, indices = _C_ops.final_state_top_k(x, k, axis, largest, sorted)
        return out, indices

H
hong 已提交
881
    if _non_static_mode():
W
wawltor 已提交
882
        if axis is None:
883 884
            out, indices = _C_ops.top_k_v2(x, 'k', int(k), 'largest', largest,
                                           'sorted', sorted)
W
wawltor 已提交
885
        else:
886 887
            out, indices = _C_ops.top_k_v2(x, 'k', int(k), 'axis', axis,
                                           'largest', largest, 'sorted', sorted)
W
wawltor 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

905 906 907 908 909 910 911
    helper.append_op(type="top_k_v2",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
W
wawltor 已提交
912 913
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
914 915


916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
def bucketize(x, sorted_sequence, out_int32=False, right=False, name=None):
    """
    This API is used to find the index of the corresponding 1D tensor `sorted_sequence` in the innermost dimension based on the given `x`.

    Args:
        x(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        sorted_sequence(Tensor): An input 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `x`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `x`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([2, 4, 8, 16], dtype='int32')
            x = paddle.to_tensor([[0, 8, 4, 16], [-1, 2, 8, 4]], dtype='int32')
            out1 = paddle.bucketize(x, sorted_sequence)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out2 = paddle.bucketize(x, sorted_sequence, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
            out3 = x.bucketize(sorted_sequence)
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 2, 1, 3],
            #         [0, 0, 2, 1]])
            out4 = x.bucketize(sorted_sequence, right=True)
            print(out4)
            # Tensor(shape=[2, 4], dtype=int64, place=CPUPlace, stop_gradient=True,
            #        [[0, 3, 2, 4],
            #         [0, 1, 3, 2]])
            
    """
    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    if sorted_sequence.dim() != 1:
        raise ValueError(
            f"sorted_sequence tensor must be 1 dimension, but got dim {sorted_sequence.dim()}"
        )
    return searchsorted(sorted_sequence, x, out_int32, right, name)


Y
Yanxing Shi 已提交
971 972 973 974 975 976
def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
977
    Find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.
Y
Yanxing Shi 已提交
978 979 980 981 982 983 984

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
985
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Y
Yanxing Shi 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """
F
From00 已提交
1017 1018 1019
    if in_dygraph_mode():
        return _C_ops.final_state_searchsorted(sorted_sequence, values,
                                               out_int32, right)
Y
Yanxing Shi 已提交
1020

F
From00 已提交
1021
    if _in_legacy_dygraph():
Y
Yanxing Shi 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    helper.append_op(type='searchsorted',
                     inputs={
                         'SortedSequence': sorted_sequence,
                         "Values": values
                     },
                     outputs={'Out': out},
                     attrs={
                         "out_int32": out_int32,
                         "right": right
                     })
Y
Yanxing Shi 已提交
1045 1046

    return out
1047 1048 1049 1050


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
1051
    Find values and indices of the k-th smallest at the axis.
1052 1053 1054 1055 1056 1057 1058 1059

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
1060
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1087
    if _non_static_mode():
1088
        if axis is not None:
1089 1090 1091 1092
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim",
                                       keepdim)
            return _C_ops.final_state_kthvalue(x, k, axis, keepdim)
1093
        else:
1094 1095 1096
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.final_state_kthvalue(x, k, -1, keepdim)
1097 1098 1099 1100 1101 1102 1103 1104 1105

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

1106 1107 1108 1109 1110 1111 1112
    helper.append_op(type="kthvalue",
                     inputs=inputs,
                     outputs={
                         "Out": [values],
                         "Indices": [indices]
                     },
                     attrs=attrs)
1113 1114
    indices.stop_gradient = True
    return values, indices