search.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20 21 22 23
# TODO: define searching & indexing functions of a tensor  
from ..fluid.layers import has_inf  #DEFINE_ALIAS
from ..fluid.layers import has_nan  #DEFINE_ALIAS

24 25
__all__ = [
    'argmax',
26 27 28 29
    'argmin',
    'argsort',
    'has_inf',
    'has_nan',
30
    'masked_select',
31
    'topk',
32
    'where',
33 34
    'index_select',
    'nonzero',
C
Chengmo 已提交
35
    'sort',
36
    'index_sample',
37 38 39
]

from paddle.common_ops_import import *
40 41


42 43 44 45 46
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
47
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            
70
            paddle.disable_static()
71 72 73 74 75 76 77
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
78 79 80 81
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
82 83 84
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
85
            # [[1 3 2 0]
W
wawltor 已提交
86 87
            #  [0 1 2 3]
            #  [2 0 3 1]]]
88
            print(out2.numpy())
W
wawltor 已提交
89 90 91 92 93 94
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
95
            print(out3.numpy())
W
wawltor 已提交
96 97 98 99 100 101
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


125
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
126 127 128 129 130
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
131
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
132 133
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
134 135 136
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
137 138 139
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
140 141 142
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
143 144

    Returns:
W
wawltor 已提交
145
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
146 147 148 149

    Examples:
        .. code-block:: python

W
wawltor 已提交
150
            import paddle
151

W
wawltor 已提交
152
            paddle.disable_static()
153 154 155
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
156 157 158 159 160 161 162 163
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
164
    """
165 166 167 168 169 170
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
171 172 173 174 175 176
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
177 178
        out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
179 180 181 182 183 184
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
185
    attrs = {}
W
wawltor 已提交
186 187 188 189
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
190
    attrs['dtype'] = var_dtype
W
wawltor 已提交
191 192 193 194 195 196
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


197
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
198 199 200 201 202 203 204 205 206 207
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
208
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
209
        dtype(str): Data type of the output tensor which can
210
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
225 226 227
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
228 229 230 231 232 233 234 235 236
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
237 238 239 240 241 242
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
243
    flatten = False
244
    if axis is None:
W
wawltor 已提交
245 246 247 248
        flatten = True
        axis = 0

    if in_dygraph_mode():
249 250
        out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
251 252 253 254 255 256 257
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    out = helper.create_variable_for_type_inference(var_dtype)
258
    attrs = {}
W
wawltor 已提交
259
    attrs['keepdims'] = keepdim
260
    attrs['axis'] = axis
W
wawltor 已提交
261
    attrs['flatten'] = flatten
262
    attrs['dtype'] = var_dtype
263
    helper.append_op(
W
wawltor 已提交
264
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
265 266
    out.stop_gradient = True
    return out
267 268


269
def index_select(x, index, axis=0, name=None):
270
    """
271
	:alias_main: paddle.index_select
272
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
273

274 275 276 277
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
278

279
    Args:
280 281 282
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
283 284 285
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
286 287

    Returns:
288
        Tensor: A Tensor with same data type as ``x``.
289
    
290 291
    Examples:
        .. code-block:: python
292
            
293 294
            import paddle

295
            paddle.disable_static()  # Now we are in imperative mode
296 297 298 299
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
300 301 302 303 304 305 306 307
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
308
    """
309

310
    if in_dygraph_mode():
311
        return core.ops.index_select(x, index, 'dim', axis)
312

313 314 315
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
316
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
317
                             'paddle.tensor.search.index_select')
318

319
    out = helper.create_variable_for_type_inference(x.dtype)
320 321 322

    helper.append_op(
        type='index_select',
323
        inputs={'X': x,
324 325
                'Index': index},
        outputs={'Out': out},
326
        attrs={'dim': axis})
327 328 329 330 331
    return out


def nonzero(input, as_tuple=False):
    """
332 333
	:alias_main: paddle.nonzero
	:alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero
S
swtkiwi 已提交
334

335 336 337 338 339 340 341
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
342

343 344 345 346 347 348 349 350 351 352
    Args:
        inputs (Variable): The input tensor variable.
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
        Variable. The data type is int64.

    Examples:
        .. code-block:: python
            import paddle
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

            paddle.disable_static()

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
                          [0.0, 2.0, 0.0],
                          [0.0, 0.0, 3.0]])
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            x3 = paddle.to_tensor([0.0, 0.0, 0.0])
            out_z1 = paddle.nonzero(x1)
            print(out_z1.numpy())
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
                print(out.numpy())
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
            print(out_z2.numpy())
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
                print(out.numpy())
            #[[1]
            # [3]]
            out_z3 = paddle.nonzero(x3)
            print(out_z3.numpy())
            #[]
            out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
            for out in out_z3_tuple:
                print(out.numpy())
            #[]                    
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    """
    list_out = []
    shape = input.shape
    rank = len(shape)

    if in_dygraph_mode():
        outs = core.ops.where_index(input)
    else:
        outs = layers.where(input)

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


413
def sort(x, axis=-1, descending=False, name=None):
414
    """
415 416
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
417

W
wawltor 已提交
418
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
419

420
    Args:
421
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
422 423 424 425 426 427 428 429 430 431 432
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
433
        Tensor: sorted tensor(with the same shape and data type as ``x``).
434 435 436
    Examples:
        .. code-block:: python
            import paddle
437
            
438
            paddle.disable_static()
439 440 441 442 443 444 445
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
446 447 448
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
449 450 451 452 453 454 455 456
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
457
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
458 459 460 461 462 463
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
464
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
465 466 467 468 469
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
470
    """
471
    if in_dygraph_mode():
W
wawltor 已提交
472 473
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
474
    helper = LayerHelper("sort", **locals())
475 476
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
477 478 479 480
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
481
        inputs={'X': x},
482 483 484 485
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
486
    return out
C
Chengmo 已提交
487 488


489
def where(condition, x, y, name=None):
490
    """
491 492
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
493

494 495 496
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
497

498 499 500 501 502
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
503

504

505
    Args:
506 507 508 509 510 511 512 513
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

514
    Returns:
515 516
        Variable: A Tensor with the same data dype as x. 

517 518 519
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
520
          import paddle
521

522 523 524 525
          paddle.disable_static()
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
526 527 528

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
529 530
    """
    if not in_dygraph_mode():
531
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
532
        check_variable_and_dtype(
533
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
534
        check_variable_and_dtype(
535
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
536

537 538 539
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
540
        if in_dygraph_mode():
541
            return core.ops.where(condition, x, y)
542 543
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
544
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
545 546 547

            helper.append_op(
                type='where',
548 549 550
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
551 552 553
                outputs={'Out': [out]})
            return out
    else:
554 555 556 557
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
558 559 560 561
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
562 563
def index_sample(x, index):
    """
564 565
	:alias_main: paddle.index_sample
	:alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample
S
swtkiwi 已提交
566

C
Chengmo 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

            paddle.disable_static()
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
            print(out_z1.numpy())
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
            print(top_value.numpy())
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

            print(top_index.numpy())
            #[[3 2]
            # [3 2]
            # [3 2]]

            print(out_z2.numpy())
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
637

C
Chengmo 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
674

675
            paddle.disable_static()
676 677 678 679 680 681 682

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

           paddle.disable_static()

731
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
732 733 734 735 736
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
           print(value_1.numpy())
           # [7]
           print(indices_1.numpy())
           # [3] 
737
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
           print(value_2.numpy())
           # [[7]
           #  [6]]
           print(indices_2.numpy())
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
           print(value_3.numpy())
           # [[7]
           #  [6]]
           print(indices_3.numpy())
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
           print(value_4.numpy())
           # [[2 6 5 7]]
           print(indices_4.numpy())
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'largest', largest,
                                             'sorted', sorted)
        else:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'axis', axis, 'largest',
                                             largest, 'sorted', sorted)
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices