search.py 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
17
from ..framework import LayerHelper
C
Chengmo 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
20 21
from ..framework import core, in_dygraph_mode, _non_static_mode
from ..fluid.framework import _in_legacy_dygraph
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor  
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
37
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
C
Chen Long 已提交
44
            as axis+R. Default is -1.
45 46 47 48 49 50 51 52 53 54 55 56
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
57

58
        .. code-block:: python
李灿 已提交
59

60 61
            import paddle
            
62 63 64 65 66 67 68
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
C
Chen Long 已提交
69 70 71 72
            out1 = paddle.argsort(x, axis=-1)
            out2 = paddle.argsort(x, axis=0)
            out3 = paddle.argsort(x, axis=1)
            
N
Noel 已提交
73
            print(out1)
W
wawltor 已提交
74 75 76
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
77
            # [[1 3 2 0]
W
wawltor 已提交
78 79
            #  [0 1 2 3]
            #  [2 0 3 1]]]
C
Chen Long 已提交
80
            
N
Noel 已提交
81
            print(out2)
W
wawltor 已提交
82 83 84 85 86 87
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
C
Chen Long 已提交
88
            
N
Noel 已提交
89
            print(out3)
W
wawltor 已提交
90 91 92 93 94 95
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
96
    """
H
hong 已提交
97
    if in_dygraph_mode():
98
        _, ids = _C_ops.final_state_argsort(x, axis, descending)
H
hong 已提交
99 100 101
        return ids

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
102
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


123
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
124
    """
125
    Computes the indices of the max elements of the input tensor's
126 127 128
    element along the provided axis.

    Args:
W
wawltor 已提交
129
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
130 131
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
132 133
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
134
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
135
        dtype(str|np.dtype, optional): Data type of the output tensor which can
136
                    be int32, int64. The default value is ``int64`` , and it will
137
                    return the int64 indices.
138
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
139 140

    Returns:
141
        Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
142 143 144 145

    Examples:
        .. code-block:: python

W
wawltor 已提交
146
            import paddle
147

148 149 150
            x = paddle.to_tensor([[5,8,9,5],
                                 [0,0,1,7],
                                 [6,9,2,4]])
W
wawltor 已提交
151
            out1 = paddle.argmax(x)
N
Noel 已提交
152
            print(out1) # 2
153
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
154
            print(out2) 
155
            # [2, 2, 0, 1]
W
wawltor 已提交
156
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
157
            print(out3) 
158 159 160 161
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
162
    """
163 164 165 166
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
167

168 169 170 171
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
172

173
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
174 175 176 177 178
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
179 180 181
    if in_dygraph_mode():
        return _C_ops.final_state_argmax(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
182 183
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
184 185 186 187 188 189
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
190
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
191
    attrs = {}
W
wawltor 已提交
192 193 194 195
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
196
    attrs['dtype'] = var_dtype
W
wawltor 已提交
197 198 199 200 201 202
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


203
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
204 205 206 207 208 209 210 211 212 213
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
214
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
W
wawltor 已提交
215
        dtype(str): Data type of the output tensor which can
216
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

230 231 232
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
233
            out1 = paddle.argmin(x)
N
Noel 已提交
234
            print(out1) # 4
235
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
236
            print(out2) 
237
            # [1, 1, 1, 2]
W
wawltor 已提交
238
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
239
            print(out3) 
240 241 242 243
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
244
    """
245 246 247 248
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
249

250 251 252 253
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
254

255
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
256
    flatten = False
257
    if axis is None:
W
wawltor 已提交
258 259 260
        flatten = True
        axis = 0

H
hong 已提交
261 262 263
    if in_dygraph_mode():
        return _C_ops.final_state_argmin(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
264 265
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
266 267 268 269 270 271
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
272
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
273
    out = helper.create_variable_for_type_inference(var_dtype)
274
    attrs = {}
W
wawltor 已提交
275
    attrs['keepdims'] = keepdim
276
    attrs['axis'] = axis
W
wawltor 已提交
277
    attrs['flatten'] = flatten
278
    attrs['dtype'] = var_dtype
279
    helper.append_op(
W
wawltor 已提交
280
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
281 282
    out.stop_gradient = True
    return out
283 284


285
def index_select(x, index, axis=0, name=None):
286
    """
S
swtkiwi 已提交
287

288 289 290 291
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
292

293
    Args:
294 295 296
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
297 298 299
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
300 301

    Returns:
302
        Tensor: A Tensor with same data type as ``x``.
303
    
304 305
    Examples:
        .. code-block:: python
306
            
307 308
            import paddle

309 310 311 312
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
313 314 315 316 317 318 319 320
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
321
    """
322

F
From00 已提交
323 324 325 326
    if in_dygraph_mode():
        return _C_ops.final_state_index_select(x, index, axis)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
327
        return _C_ops.index_select(x, index, 'dim', axis)
328

329 330 331
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
332
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
333
                             'paddle.tensor.search.index_select')
334

335
    out = helper.create_variable_for_type_inference(x.dtype)
336 337 338

    helper.append_op(
        type='index_select',
339
        inputs={'X': x,
340 341
                'Index': index},
        outputs={'Out': out},
342
        attrs={'dim': axis})
343 344 345
    return out


346
def nonzero(x, as_tuple=False):
347 348 349 350 351 352 353 354
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
355

356
    Args:
357
        x (Tensor): The input tensor variable.
358 359 360
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
361
        Tensor. The data type is int64.
362 363

    Examples:
364

N
Noel 已提交
365
        .. code-block:: python
李灿 已提交
366

367
            import paddle
368 369

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
370 371
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
372 373
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
374
            print(out_z1)
375 376 377 378 379
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
380
                print(out)
381 382 383 384 385 386 387
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
388
            print(out_z2)
389 390 391 392
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
393
                print(out)
394 395
            #[[1]
            # [3]]
N
Noel 已提交
396

397 398
    """
    list_out = []
399
    shape = x.shape
400 401
    rank = len(shape)

402 403 404
    if in_dygraph_mode():
        outs = _C_ops.final_state_where_index(x)
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
405
        outs = _C_ops.where_index(x)
406
    else:
407 408 409 410 411 412 413 414 415
        helper = LayerHelper("where_index", **locals())

        outs = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64)

        helper.append_op(
            type='where_index',
            inputs={'Condition': x},
            outputs={'Out': [outs]})
416 417 418 419 420 421 422 423

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
424
                paddle.slice(
425
                    outs, axes=[1], starts=[i], ends=[i + 1]))
426 427 428
        return tuple(list_out)


429
def sort(x, axis=-1, descending=False, name=None):
430
    """
S
swtkiwi 已提交
431

W
wawltor 已提交
432
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
433

434
    Args:
435
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
436 437 438 439 440 441 442 443 444 445 446
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
447
        Tensor: sorted tensor(with the same shape and data type as ``x``).
448
    Examples:
N
Noel 已提交
449

450
        .. code-block:: python
N
Noel 已提交
451

452
            import paddle
N
Noel 已提交
453

454 455 456 457 458 459 460
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
461 462 463
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
464
            print(out1)
W
wawltor 已提交
465 466 467 468 469 470
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
471
            print(out2)
472
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
473 474 475 476 477
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
478
            print(out3)
479
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
480 481 482 483 484
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
485
    """
486 487 488 489 490 491 492
    if in_dygraph_mode():
        outs, _ = _C_ops.final_state_argsort(x, axis, descending)
        return outs

    if _in_legacy_dygraph():
        outs, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
        return outs
493
    helper = LayerHelper("sort", **locals())
494 495
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
496 497 498 499
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
500
        inputs={'X': x},
501 502 503 504
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
505
    return out
C
Chengmo 已提交
506 507


508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
539 540 541
    if in_dygraph_mode():
        return _C_ops.final_state_mode(x, axis, keepdim)
    if _in_legacy_dygraph():
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
563
def where(condition, x=None, y=None, name=None):
564
    r"""
565 566
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
567 568 569
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

570
    .. math::
C
Chengmo 已提交
571

572
      out_i =
R
ronnywang 已提交
573 574 575 576
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
577

578

579
    Args:
R
ronnywang 已提交
580
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
581 582
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
583 584 585 586 587

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

588
    Returns:
G
GaoWei8 已提交
589
        Tensor: A Tensor with the same data dype as x. 
590

591 592 593
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
594
          import paddle
595

596 597 598
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
599

G
GaoWei8 已提交
600
          print(out)
601
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
602 603 604 605 606 607

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
608
    """
R
ronnywang 已提交
609
    if np.isscalar(x):
610
        x = paddle.full([1], x, np.array([x]).dtype.name)
R
ronnywang 已提交
611 612

    if np.isscalar(y):
613
        y = paddle.full([1], y, np.array([y]).dtype.name)
R
ronnywang 已提交
614

R
ronnywang 已提交
615 616 617 618 619 620
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
621
    if not paddle.in_dynamic_mode():
622
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
623
        check_variable_and_dtype(
624
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
625
        check_variable_and_dtype(
626
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
627

628
    condition_shape = list(condition.shape)
629 630
    x_shape = list(x.shape)
    y_shape = list(y.shape)
631

632
    if x_shape == y_shape and condition_shape == x_shape:
633 634 635 636 637
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
638 639 640 641 642
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
643
            return out
644

Z
zhiboniu 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
658 659 660
    if in_dygraph_mode():
        return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                        broadcast_y)
661
    else:
J
Jiabin Yang 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675
        if _in_legacy_dygraph():
            return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='where',
                inputs={
                    'Condition': broadcast_condition,
                    'X': broadcast_x,
                    'Y': broadcast_y
                },
                outputs={'Out': [out]})
676

J
Jiabin Yang 已提交
677
            return out
678 679


C
Chengmo 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
704
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
705
            int32, int64, float32, float64.
C
Chengmo 已提交
706
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
707 708 709
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
710
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
711 712 713 714 715 716

    Examples:

        .. code-block:: python

            import paddle
717 718 719 720 721 722 723 724 725 726 727

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
728
            print(out_z1)
729 730 731 732 733 734 735 736
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
737
            print(top_value)
738 739 740 741
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
742
            print(top_index)
743 744 745 746
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
747
            print(out_z2)
748 749 750
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
751

C
Chengmo 已提交
752
    """
J
Jiabin Yang 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    if in_dygraph_mode():
        return _C_ops.final_state_index_sample(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.index_sample(x, index)
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='index_sample',
                inputs={'X': x,
                        'Index': index},
                outputs={'Out': out})
            return out
773 774 775 776


def masked_select(x, mask, name=None):
    """
C
Chen Long 已提交
777
    Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
794 795 796 797 798 799 800

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
801 802 803 804
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
805 806 807 808
    if in_dygraph_mode():
        return _C_ops.final_state_masked_select(x, mask)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
809
        return _C_ops.masked_select(x, mask)
810 811 812 813 814 815 816 817 818 819 820

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

850
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
851
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
852
           print(value_1)
W
wawltor 已提交
853
           # [7]
N
Noel 已提交
854
           print(indices_1)
W
wawltor 已提交
855
           # [3] 
856
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
857
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
858
           print(value_2)
W
wawltor 已提交
859 860
           # [[7]
           #  [6]]
N
Noel 已提交
861
           print(indices_2)
W
wawltor 已提交
862 863 864
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
865
           print(value_3)
W
wawltor 已提交
866 867
           # [[7]
           #  [6]]
N
Noel 已提交
868
           print(indices_3)
W
wawltor 已提交
869 870 871
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
872
           print(value_4)
W
wawltor 已提交
873
           # [[2 6 5 7]]
N
Noel 已提交
874
           print(indices_4)
W
wawltor 已提交
875 876 877
           # [[1 1 0 0]]

    """
H
hong 已提交
878

H
hong 已提交
879 880 881 882 883 884
    if in_dygraph_mode():
        if axis == None:
            axis = -1
        out, indices = _C_ops.final_state_top_k(x, k, axis, largest, sorted)
        return out, indices

H
hong 已提交
885
    if _non_static_mode():
W
wawltor 已提交
886
        if axis is None:
W
wanghuancoder 已提交
887 888 889
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
890
        else:
W
wanghuancoder 已提交
891 892 893
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """
F
From00 已提交
967 968 969
    if in_dygraph_mode():
        return _C_ops.final_state_searchsorted(sorted_sequence, values,
                                               out_int32, right)
Y
Yanxing Shi 已提交
970

F
From00 已提交
971
    if _in_legacy_dygraph():
Y
Yanxing Shi 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1034
    if _non_static_mode():
1035
        if axis is not None:
1036 1037 1038 1039
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim",
                                       keepdim)
            return _C_ops.final_state_kthvalue(x, k, axis, keepdim)
1040
        else:
1041 1042 1043
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.final_state_kthvalue(x, k, -1, keepdim)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices