search.py 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
C
Chengmo 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
J
Jiabin Yang 已提交
20
from ..framework import core
H
hong 已提交
21
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor  
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
37
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
57

58
        .. code-block:: python
李灿 已提交
59

60 61
            import paddle
            
62 63 64 65 66 67 68
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
69 70 71
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
72
            print(out1)
W
wawltor 已提交
73 74 75
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
76
            # [[1 3 2 0]
W
wawltor 已提交
77 78
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
86
            print(out3)
W
wawltor 已提交
87 88 89 90 91 92
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
93
    """
Z
zhiboniu 已提交
94
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
95
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


116
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
117 118 119 120 121
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
122
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
123 124
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
125 126
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
127
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
128 129 130
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
131 132 133
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
134 135

    Returns:
W
wawltor 已提交
136
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
137 138 139 140

    Examples:
        .. code-block:: python

W
wawltor 已提交
141
            import paddle
142

143 144 145
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
146
            out1 = paddle.argmax(x)
N
Noel 已提交
147
            print(out1) # 2
148
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
149
            print(out2) 
150
            # [2, 2, 0, 1]
W
wawltor 已提交
151
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
152
            print(out3) 
153 154 155 156
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
157
    """
158 159 160 161
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
162

163 164 165 166
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
167

168
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
169 170 171 172 173
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

Z
zhiboniu 已提交
174
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
175 176
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
177 178 179 180 181 182
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
183
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
184
    attrs = {}
W
wawltor 已提交
185 186 187 188
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
189
    attrs['dtype'] = var_dtype
W
wawltor 已提交
190 191 192 193 194 195
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


196
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
197 198 199 200 201 202 203 204 205 206
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
207
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
W
wawltor 已提交
208
        dtype(str): Data type of the output tensor which can
209
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

223 224 225
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
226
            out1 = paddle.argmin(x)
N
Noel 已提交
227
            print(out1) # 4
228
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
229
            print(out2) 
230
            # [1, 1, 1, 2]
W
wawltor 已提交
231
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
232
            print(out3) 
233 234 235 236
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
237
    """
238 239 240 241
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
242

243 244 245 246
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
247

248
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
249
    flatten = False
250
    if axis is None:
W
wawltor 已提交
251 252 253
        flatten = True
        axis = 0

Z
zhiboniu 已提交
254
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
255 256
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
257 258 259 260 261 262
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
263
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
264
    out = helper.create_variable_for_type_inference(var_dtype)
265
    attrs = {}
W
wawltor 已提交
266
    attrs['keepdims'] = keepdim
267
    attrs['axis'] = axis
W
wawltor 已提交
268
    attrs['flatten'] = flatten
269
    attrs['dtype'] = var_dtype
270
    helper.append_op(
W
wawltor 已提交
271
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
272 273
    out.stop_gradient = True
    return out
274 275


276
def index_select(x, index, axis=0, name=None):
277
    """
S
swtkiwi 已提交
278

279 280 281 282
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
283

284
    Args:
285 286 287
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
288 289 290
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
291 292

    Returns:
293
        Tensor: A Tensor with same data type as ``x``.
294
    
295 296
    Examples:
        .. code-block:: python
297
            
298 299
            import paddle

300 301 302 303
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
304 305 306 307 308 309 310 311
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
312
    """
313

Z
zhiboniu 已提交
314
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
315
        return _C_ops.index_select(x, index, 'dim', axis)
316

317 318 319
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
320
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
321
                             'paddle.tensor.search.index_select')
322

323
    out = helper.create_variable_for_type_inference(x.dtype)
324 325 326

    helper.append_op(
        type='index_select',
327
        inputs={'X': x,
328 329
                'Index': index},
        outputs={'Out': out},
330
        attrs={'dim': axis})
331 332 333
    return out


334
def nonzero(x, as_tuple=False):
335 336 337 338 339 340 341 342
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
343

344
    Args:
345
        x (Tensor): The input tensor variable.
346 347 348
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
349
        Tensor. The data type is int64.
350 351

    Examples:
352

N
Noel 已提交
353
        .. code-block:: python
李灿 已提交
354

355
            import paddle
356 357

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
358 359
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
360 361
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
362
            print(out_z1)
363 364 365 366 367
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
368
                print(out)
369 370 371 372 373 374 375
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
376
            print(out_z2)
377 378 379 380
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
381
                print(out)
382 383
            #[[1]
            # [3]]
N
Noel 已提交
384

385 386
    """
    list_out = []
387
    shape = x.shape
388 389
    rank = len(shape)

Z
zhiboniu 已提交
390
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
391
        outs = _C_ops.where_index(x)
392
    else:
393
        outs = layers.where(x)
394 395 396 397 398 399 400 401

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
402
                paddle.slice(
403
                    outs, axes=[1], starts=[i], ends=[i + 1]))
404 405 406
        return tuple(list_out)


407
def sort(x, axis=-1, descending=False, name=None):
408
    """
S
swtkiwi 已提交
409

W
wawltor 已提交
410
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
411

412
    Args:
413
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
414 415 416 417 418 419 420 421 422 423 424
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
425
        Tensor: sorted tensor(with the same shape and data type as ``x``).
426
    Examples:
N
Noel 已提交
427

428
        .. code-block:: python
N
Noel 已提交
429

430
            import paddle
N
Noel 已提交
431

432 433 434 435 436 437 438
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
439 440 441
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
442
            print(out1)
W
wawltor 已提交
443 444 445 446 447 448
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
449
            print(out2)
450
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
451 452 453 454 455
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
456
            print(out3)
457
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
458 459 460 461 462
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
463
    """
Z
zhiboniu 已提交
464
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
465
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
466
        return out
467
    helper = LayerHelper("sort", **locals())
468 469
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
470 471 472 473
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
474
        inputs={'X': x},
475 476 477 478
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
479
    return out
C
Chengmo 已提交
480 481


482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
Z
zhiboniu 已提交
513
    if paddle.in_dynamic_mode():
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
535
def where(condition, x=None, y=None, name=None):
536
    r"""
537 538
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
539 540 541
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

542
    .. math::
C
Chengmo 已提交
543

544
      out_i =
R
ronnywang 已提交
545 546 547 548
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
549

550

551
    Args:
R
ronnywang 已提交
552
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
553 554
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
555 556 557 558 559

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

560
    Returns:
G
GaoWei8 已提交
561
        Tensor: A Tensor with the same data dype as x. 
562

563 564 565
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
566
          import paddle
567

568 569 570
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
571

G
GaoWei8 已提交
572
          print(out)
573
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
574 575 576 577 578 579

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
580
    """
R
ronnywang 已提交
581 582 583 584 585 586
    if np.isscalar(x):
        x = layers.fill_constant([1], np.array([x]).dtype.name, x)

    if np.isscalar(y):
        y = layers.fill_constant([1], np.array([y]).dtype.name, y)

R
ronnywang 已提交
587 588 589 590 591 592
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
593
    if not paddle.in_dynamic_mode():
594
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
595
        check_variable_and_dtype(
596
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
597
        check_variable_and_dtype(
598
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
599

600
    condition_shape = list(condition.shape)
601 602
    x_shape = list(x.shape)
    y_shape = list(y.shape)
603

604
    if x_shape == y_shape and condition_shape == x_shape:
605 606 607 608 609
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
610 611 612 613 614
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
615
            return out
616

Z
zhiboniu 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
630 631 632
    if in_dygraph_mode():
        return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                        broadcast_y)
633
    else:
J
Jiabin Yang 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647
        if _in_legacy_dygraph():
            return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='where',
                inputs={
                    'Condition': broadcast_condition,
                    'X': broadcast_x,
                    'Y': broadcast_y
                },
                outputs={'Out': [out]})
648

J
Jiabin Yang 已提交
649
            return out
650 651


C
Chengmo 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
676
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
677
            int32, int64, float32, float64.
C
Chengmo 已提交
678
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
679 680 681
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
682
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
683 684 685 686 687 688

    Examples:

        .. code-block:: python

            import paddle
689 690 691 692 693 694 695 696 697 698 699

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
700
            print(out_z1)
701 702 703 704 705 706 707 708
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
709
            print(top_value)
710 711 712 713
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
714
            print(top_index)
715 716 717 718
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
719
            print(out_z2)
720 721 722
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
723

C
Chengmo 已提交
724
    """
J
Jiabin Yang 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    if in_dygraph_mode():
        return _C_ops.final_state_index_sample(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.index_sample(x, index)
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='index_sample',
                inputs={'X': x,
                        'Index': index},
                outputs={'Out': out})
            return out
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
766 767 768 769 770 771 772

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
773 774 775 776
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
777 778 779 780
    if in_dygraph_mode():
        return _C_ops.final_state_masked_select(x, mask)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
781
        return _C_ops.masked_select(x, mask)
782 783 784 785 786 787 788 789 790 791 792

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

822
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
823
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
824
           print(value_1)
W
wawltor 已提交
825
           # [7]
N
Noel 已提交
826
           print(indices_1)
W
wawltor 已提交
827
           # [3] 
828
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
829
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
830
           print(value_2)
W
wawltor 已提交
831 832
           # [[7]
           #  [6]]
N
Noel 已提交
833
           print(indices_2)
W
wawltor 已提交
834 835 836
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
837
           print(value_3)
W
wawltor 已提交
838 839
           # [[7]
           #  [6]]
N
Noel 已提交
840
           print(indices_3)
W
wawltor 已提交
841 842 843
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
844
           print(value_4)
W
wawltor 已提交
845
           # [[2 6 5 7]]
N
Noel 已提交
846
           print(indices_4)
W
wawltor 已提交
847 848 849
           # [[1 1 0 0]]

    """
H
hong 已提交
850 851

    if _non_static_mode():
W
wawltor 已提交
852
        if axis is None:
W
wanghuancoder 已提交
853 854 855
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
856
        else:
W
wanghuancoder 已提交
857 858 859
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

Z
zhiboniu 已提交
934
    if paddle.in_dynamic_mode():
Y
Yanxing Shi 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
Z
zhiboniu 已提交
997
    if paddle.in_dynamic_mode():
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        if axis is not None:
            return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim", keepdim)
        else:
            return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices