search.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20
# TODO: define searching & indexing functions of a tensor  
21 22
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
23

24 25
__all__ = [
    'argmax',
26 27
    'argmin',
    'argsort',
28
    'masked_select',
29
    'topk',
30
    'where',
31 32
    'index_select',
    'nonzero',
C
Chengmo 已提交
33
    'sort',
34
    'index_sample',
35 36 37
]

from paddle.common_ops_import import *
38 39


40 41 42 43 44
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
45
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            
68
            paddle.disable_static()
69 70 71 72 73 74 75
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
76 77 78 79
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
80 81 82
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
83
            # [[1 3 2 0]
W
wawltor 已提交
84 85
            #  [0 1 2 3]
            #  [2 0 3 1]]]
86
            print(out2.numpy())
W
wawltor 已提交
87 88 89 90 91 92
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
93
            print(out3.numpy())
W
wawltor 已提交
94 95 96 97 98 99
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


123
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
124 125 126 127 128
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
129
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
130 131
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
132 133 134
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
135 136 137
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
138 139 140
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
141 142

    Returns:
W
wawltor 已提交
143
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
144 145 146 147

    Examples:
        .. code-block:: python

W
wawltor 已提交
148
            import paddle
149

W
wawltor 已提交
150
            paddle.disable_static()
151 152 153
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
154 155 156 157 158 159 160 161
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
162
    """
163 164 165 166
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
167

168 169 170 171
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
172

173 174
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
175 176 177 178 179 180
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
181 182
        out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
183 184 185 186 187 188
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
189
    attrs = {}
W
wawltor 已提交
190 191 192 193
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
194
    attrs['dtype'] = var_dtype
W
wawltor 已提交
195 196 197 198 199 200
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


201
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
202 203 204 205 206 207 208 209 210 211
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
212
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
213
        dtype(str): Data type of the output tensor which can
214
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
229 230 231
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
232 233 234 235 236 237 238 239 240
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
241 242 243 244
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
245

246 247 248 249
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
250

251 252
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
253
    flatten = False
254
    if axis is None:
W
wawltor 已提交
255 256 257 258
        flatten = True
        axis = 0

    if in_dygraph_mode():
259 260
        out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
261 262 263 264 265 266 267
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    out = helper.create_variable_for_type_inference(var_dtype)
268
    attrs = {}
W
wawltor 已提交
269
    attrs['keepdims'] = keepdim
270
    attrs['axis'] = axis
W
wawltor 已提交
271
    attrs['flatten'] = flatten
272
    attrs['dtype'] = var_dtype
273
    helper.append_op(
W
wawltor 已提交
274
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
275 276
    out.stop_gradient = True
    return out
277 278


279
def index_select(x, index, axis=0, name=None):
280
    """
281
	:alias_main: paddle.index_select
282
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
283

284 285 286 287
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
288

289
    Args:
290 291 292
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
293 294 295
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
296 297

    Returns:
298
        Tensor: A Tensor with same data type as ``x``.
299
    
300 301
    Examples:
        .. code-block:: python
302
            
303 304
            import paddle

305
            paddle.disable_static()  # Now we are in imperative mode
306 307 308 309
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
310 311 312 313 314 315 316 317
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
318
    """
319

320
    if in_dygraph_mode():
321
        return core.ops.index_select(x, index, 'dim', axis)
322

323 324 325
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
326
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
327
                             'paddle.tensor.search.index_select')
328

329
    out = helper.create_variable_for_type_inference(x.dtype)
330 331 332

    helper.append_op(
        type='index_select',
333
        inputs={'X': x,
334 335
                'Index': index},
        outputs={'Out': out},
336
        attrs={'dim': axis})
337 338 339
    return out


340
def nonzero(x, as_tuple=False):
341 342 343 344 345 346 347 348
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
349

350
    Args:
351
        x (Tensor): The input tensor variable.
352 353 354
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
355
        Tensor. The data type is int64.
356 357

    Examples:
358
    
359
        .. code-block:: python
360

361
            import paddle
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
                          [0.0, 2.0, 0.0],
                          [0.0, 0.0, 3.0]])
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            x3 = paddle.to_tensor([0.0, 0.0, 0.0])
            out_z1 = paddle.nonzero(x1)
            print(out_z1.numpy())
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
                print(out.numpy())
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
            print(out_z2.numpy())
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
                print(out.numpy())
            #[[1]
            # [3]]
            out_z3 = paddle.nonzero(x3)
            print(out_z3.numpy())
            #[]
            out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
            for out in out_z3_tuple:
                print(out.numpy())
            #[]                    
398 399
    """
    list_out = []
400
    shape = x.shape
401 402 403
    rank = len(shape)

    if in_dygraph_mode():
404
        outs = core.ops.where_index(x)
405
    else:
406
        outs = layers.where(x)
407 408 409 410 411 412 413 414 415 416 417 418 419

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


420
def sort(x, axis=-1, descending=False, name=None):
421
    """
422 423
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
424

W
wawltor 已提交
425
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
426

427
    Args:
428
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
429 430 431 432 433 434 435 436 437 438 439
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
440
        Tensor: sorted tensor(with the same shape and data type as ``x``).
441 442 443
    Examples:
        .. code-block:: python
            import paddle
444
            
445
            paddle.disable_static()
446 447 448 449 450 451 452
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
453 454 455
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
456 457 458 459 460 461 462 463
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
464
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
465 466 467 468 469 470
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
471
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
472 473 474 475 476
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
477
    """
478
    if in_dygraph_mode():
W
wawltor 已提交
479 480
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
481
    helper = LayerHelper("sort", **locals())
482 483
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
484 485 486 487
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
488
        inputs={'X': x},
489 490 491 492
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
493
    return out
C
Chengmo 已提交
494 495


496
def where(condition, x, y, name=None):
497
    """
498 499
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
500

501 502 503
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
504

505 506 507 508 509
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
510

511

512
    Args:
513 514 515 516 517 518 519 520
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

521
    Returns:
522 523
        Variable: A Tensor with the same data dype as x. 

524 525 526
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
527
          import paddle
528

529 530 531 532
          paddle.disable_static()
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
533 534 535

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
536 537
    """
    if not in_dygraph_mode():
538
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
539
        check_variable_and_dtype(
540
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
541
        check_variable_and_dtype(
542
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
543

544 545 546
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
547
        if in_dygraph_mode():
548
            return core.ops.where(condition, x, y)
549 550
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
551
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
552 553 554

            helper.append_op(
                type='where',
555 556 557
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
558 559 560
                outputs={'Out': [out]})
            return out
    else:
561 562 563 564
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
565 566 567 568
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
593
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
594
            int32, int64, float32, float64.
C
Chengmo 已提交
595
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
596 597 598
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
599
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
600 601 602 603 604 605

    Examples:

        .. code-block:: python

            import paddle
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
            print(out_z1.numpy())
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
            print(top_value.numpy())
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

            print(top_index.numpy())
            #[[3 2]
            # [3 2]
            # [3 2]]

            print(out_z2.numpy())
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
640

C
Chengmo 已提交
641
    """
C
Chengmo 已提交
642 643 644
    if in_dygraph_mode():
        return core.ops.index_sample(x, index)

C
Chengmo 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
679

680
            paddle.disable_static()
681 682 683 684 685 686 687

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

           paddle.disable_static()

736
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
737 738 739 740 741
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
           print(value_1.numpy())
           # [7]
           print(indices_1.numpy())
           # [3] 
742
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
           print(value_2.numpy())
           # [[7]
           #  [6]]
           print(indices_2.numpy())
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
           print(value_3.numpy())
           # [[7]
           #  [6]]
           print(indices_3.numpy())
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
           print(value_4.numpy())
           # [[2 6 5 7]]
           print(indices_4.numpy())
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'largest', largest,
                                             'sorted', sorted)
        else:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'axis', axis, 'largest',
                                             largest, 'sorted', sorted)
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices